forked from openvinotoolkit/openvino
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_tf_DivNoNan.py
50 lines (43 loc) · 1.99 KB
/
test_tf_DivNoNan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
# Copyright (C) 2018-2025 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
import numpy as np
import pytest
import tensorflow as tf
from common.tf_layer_test_class import CommonTFLayerTest
from common.utils.tf_utils import mix_array_with_value
rng = np.random.default_rng(23235)
class TestDivNoNan(CommonTFLayerTest):
def _prepare_input(self, inputs_info):
assert 'x:0' in inputs_info
assert 'y:0' in inputs_info
x_shape = inputs_info['x:0']
y_shape = inputs_info['y:0']
inputs_data = {}
inputs_data['x:0'] = rng.uniform(-5.0, 5.0, x_shape).astype(self.input_type)
# provide zeros in y input
y_data = rng.uniform(-5.0, 5.0, y_shape).astype(self.input_type)
y_data = mix_array_with_value(y_data, 0.0)
inputs_data['y:0'] = y_data
return inputs_data
def create_div_no_nan_net(self, x_shape, y_shape, input_type):
self.input_type = input_type
tf.compat.v1.reset_default_graph()
# Create the graph and model
with tf.compat.v1.Session() as sess:
x = tf.compat.v1.placeholder(input_type, x_shape, 'x')
y = tf.compat.v1.placeholder(input_type, y_shape, 'y')
tf.raw_ops.DivNoNan(x=x, y=y)
tf.compat.v1.global_variables_initializer()
tf_net = sess.graph_def
return tf_net, None
@pytest.mark.parametrize('x_shape', [[], [4], [3, 4], [2, 3, 4]])
@pytest.mark.parametrize('y_shape', [[2, 3, 4]])
@pytest.mark.parametrize('input_type', [np.float16, np.float32, np.float64])
@pytest.mark.precommit
@pytest.mark.nightly
def test_div_no_nan_basic(self, x_shape, y_shape, input_type,
ie_device, precision, ir_version,
temp_dir, use_legacy_frontend):
self._test(*self.create_div_no_nan_net(x_shape, y_shape, input_type),
ie_device, precision, ir_version, temp_dir=temp_dir,
use_legacy_frontend=use_legacy_frontend)