forked from openvinotoolkit/openvino
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_tf_Gather.py
81 lines (70 loc) · 3.68 KB
/
test_tf_Gather.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
# Copyright (C) 2018-2025 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
import numpy as np
import pytest
import tensorflow as tf
from common.tf_layer_test_class import CommonTFLayerTest
rng = np.random.default_rng()
class TestGather(CommonTFLayerTest):
def _prepare_input(self, inputs_info):
assert 'params:0' in inputs_info
assert 'indices:0' in inputs_info
params_shape = inputs_info['params:0']
indices_shape = inputs_info['indices:0']
inputs_data = {}
if self.params_type == str or self.params_type == np.str_:
strings_dictionary = ['first', 'second sentence', ' sentence 3 three', '34ferf466 23435* ']
inputs_data['params:0'] = rng.choice(strings_dictionary, params_shape)
else:
inputs_data['params:0'] = rng.integers(-50, 50, params_shape).astype(self.params_type)
inputs_data['indices:0'] = rng.integers(0, self.max_index, indices_shape).astype(self.indices_type)
return inputs_data
def create_gather_net(self, params_shape, params_type, indices_shape, indices_type, axis_value, batch_dims,
operation_type):
self.params_type = params_type
if params_type == str or params_type == np.str_:
params_type = tf.string
self.indices_type = indices_type
if batch_dims is None:
batch_dims = 0
if axis_value is None:
axis_value = 0
axis_norm = axis_value
if axis_norm < 0:
axis_norm += len(params_shape)
assert 0 <= axis_norm < len(params_shape), "Incorrect `axis` value for the test case"
self.max_index = params_shape[axis_norm]
tf.compat.v1.reset_default_graph()
with tf.compat.v1.Session() as sess:
params = tf.compat.v1.placeholder(params_type, params_shape, 'params')
indices = tf.compat.v1.placeholder(indices_type, indices_shape, 'indices')
if operation_type == "Gather":
tf.raw_ops.Gather(params=params, indices=indices)
elif operation_type == "GatherV2":
axis = tf.constant(axis_value, dtype=tf.int32)
tf.raw_ops.GatherV2(params=params, indices=indices, axis=axis, batch_dims=batch_dims)
else:
assert False, "Incorrect operation type is tested"
tf.compat.v1.global_variables_initializer()
tf_net = sess.graph_def
ref_net = None
return tf_net, ref_net
test_data_precommit = [
dict(params_shape=[4, 6], indices_shape=[], axis_value=None, batch_dims=None, operation_type='Gather'),
dict(params_shape=[3, 4, 6], indices_shape=[3, 4], axis_value=None, batch_dims=None, operation_type='Gather'),
dict(params_shape=[5, 4, 3], indices_shape=[5, 2, 1], axis_value=2, batch_dims=1, operation_type='GatherV2'),
dict(params_shape=[3, 2, 6, 4], indices_shape=[3, 2, 1, 3], axis_value=-1, batch_dims=-2,
operation_type='GatherV2'),
]
@pytest.mark.parametrize("params", test_data_precommit)
@pytest.mark.parametrize("params_type", [np.float32, np.int32, str, np.str_])
@pytest.mark.parametrize("indices_type", [np.int32, np.int64])
@pytest.mark.precommit
@pytest.mark.nightly
def test_gather(self, params, params_type, indices_type, ie_device, precision, ir_version, temp_dir,
use_legacy_frontend):
if ie_device == 'GPU':
pytest.skip("timeout issue on GPU")
self._test(*self.create_gather_net(**params, params_type=params_type, indices_type=indices_type),
ie_device, precision, ir_version, temp_dir=temp_dir,
use_legacy_frontend=use_legacy_frontend)