forked from 51Degrees/common-cxx
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfloat.c
140 lines (134 loc) · 5.31 KB
/
float.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
/* *********************************************************************
* This Original Work is copyright of 51 Degrees Mobile Experts Limited.
* Copyright 2020 51 Degrees Mobile Experts Limited, 5 Charlotte Close,
* Caversham, Reading, Berkshire, United Kingdom RG4 7BY.
*
* This Original Work is the subject of the following patents and patent
* applications, owned by 51 Degrees Mobile Experts Limited of 5 Charlotte
* Close, Caversham, Reading, Berkshire, United Kingdom RG4 7BY:
* European Patent No. 2871816; and
* United States Patent Nos. 9,332,086 and 9,350,823.
*
* This Original Work is licensed under the European Union Public Licence (EUPL)
* v.1.2 and is subject to its terms as set out below.
*
* If a copy of the EUPL was not distributed with this file, You can obtain
* one at https://opensource.org/licenses/EUPL-1.2.
*
* The 'Compatible Licences' set out in the Appendix to the EUPL (as may be
* amended by the European Commission) shall be deemed incompatible for
* the purposes of the Work and the provisions of the compatibility
* clause in Article 5 of the EUPL shall not apply.
*
* If using the Work as, or as part of, a network application, by
* including the attribution notice(s) required under Article 5 of the EUPL
* in the end user terms of the application under an appropriate heading,
* such notice(s) shall fulfill the requirements of that article.
* ********************************************************************* */
#include <math.h>
#include "fiftyone.h"
#include "float.h"
float fiftyoneDegreesFloatToNative(fiftyoneDegreesFloatInternal f) {
fiftyoneDegreesFloatU floatU;
float nativeValue;
floatU.fValue = f;
if (floatU.parts.exponent == 0) {
if (floatU.parts.mantissa == 0) {
// When all bits in exponent and mantissa are 0s. The float value is 0.
nativeValue = 0;
}
else {
/*
* When all bits in exponent are 0s but not in the mantissa. This is a
* denormalised float (or subnormal case).
* The exponent will be treated as '00000001' instead and the mantissa
* won't use the hidden bit.
* i.e. float = (-1)^sign * 2^(1 - bias) * (0 + mantissa)
*/
nativeValue = (float)powf(-1, (float)floatU.parts.sign);
nativeValue *= powf(FIFTYONE_DEGREES_FLOAT_RADIX, 1 - FIFTYONE_DEGREES_FLOAT_BIAS);
/*
* The actual mantissa value is calculated by take its unsigned integer
* and divided by 2 to the power of number of bits in the mantissa.
* This is how the fractional point is shifted in binary number.
*/
nativeValue *= ((float)floatU.parts.mantissa) / powf(FIFTYONE_DEGREES_FLOAT_RADIX, FIFTYONE_DEGREES_FLOAT_MANT_SIZE);
}
}
else if (floatU.parts.exponent == FIFTYONE_DEGREES_FLOAT_EXP_MAX) {
if (floatU.parts.mantissa == FIFTYONE_DEGREES_FLOAT_MANT_MAX) {
/*
* If all bits in exponent and mantissa are 1s, it is an infinity value
*/
nativeValue = INFINITY;
}
else {
/*
* If all bits in exponet are 1s but not the mantissa, it is not a number
*/
nativeValue = NAN;
}
}
else {
/*
* Normal case. Float value is caluclated by
* float = (-1)^sign * 2^(exponent - bias) * (1 + mantissa)
*/
nativeValue = (float)powf(-1, (float)floatU.parts.sign);
nativeValue *= (floatU.parts.exponent == 0 ? 0 : powf(FIFTYONE_DEGREES_FLOAT_RADIX, (float)(floatU.parts.exponent) - FIFTYONE_DEGREES_FLOAT_BIAS));
nativeValue *= (1 + ((float)floatU.parts.mantissa) / powf(FIFTYONE_DEGREES_FLOAT_RADIX, FIFTYONE_DEGREES_FLOAT_MANT_SIZE));
}
return nativeValue;
}
fiftyoneDegreesFloatInternal fiftyoneDegreesNativeToFloat(float f) {
fiftyoneDegreesFloatU floatU = { .fValue = 0 };
float significand;
int exponent;
switch (fpclassify(f)) {
case FP_NAN:
// If NaN, set exponent to all 1s and mantissa to 1
floatU.parts.exponent = FIFTYONE_DEGREES_FLOAT_EXP_MAX;
floatU.parts.mantissa = 1;
break;
case FP_INFINITE:
// If Inf, set exponent and mantissa to all 1s
floatU.parts.exponent = FIFTYONE_DEGREES_FLOAT_EXP_MAX;
floatU.parts.mantissa = FIFTYONE_DEGREES_FLOAT_MANT_MAX;
break;
case FP_SUBNORMAL:
// If subnormal, leave exponent to 0
significand = (float)frexp(f, &exponent);
floatU.parts.sign = (f >= 0) ? 0 : -1;
/*
* Significand is fractional so time with 2 to power of number of mantissa bits
* to get its integer
*/
floatU.parts.mantissa = (int)(fabsf(significand) * powf(FIFTYONE_DEGREES_FLOAT_RADIX, FIFTYONE_DEGREES_FLOAT_MANT_SIZE));
break;
case FP_NORMAL:
significand = (float)frexp(f, &exponent);
floatU.parts.sign = (f >= 0) ? 0 : -1;
/*
* frexp returns value between (-1, 0.5],[0.5, 1) * exponent of 2
* to convert to the float calculation formular
* (-1)^sign + 2^(exponent - bias) * (1 + mantissa)
* the significand need to be > 1. Thus move 1 bit from the exponent
* to the mantissa. This 1 bit represents the hidden bit.
*/
floatU.parts.exponent = exponent - 1 + FIFTYONE_DEGREES_FLOAT_BIAS;
floatU.parts.mantissa = (int)((fabsf(significand) * FIFTYONE_DEGREES_FLOAT_RADIX - 1)
* powf(FIFTYONE_DEGREES_FLOAT_RADIX, FIFTYONE_DEGREES_FLOAT_MANT_SIZE));
break;
case FP_ZERO:
default:
break;
}
return floatU.fValue;
}
int fiftyoneDegreesFloatIsEqual(fiftyoneDegreesFloatInternal f1, fiftyoneDegreesFloatInternal f2) {
int isEqual = 0;
for (int i = 0; i < FIFTYONE_DEGREES_FLOAT_SIZE; i++) {
isEqual |= (f1.value[i] == f2.value[i] ? 0 : 1);
}
return isEqual;
}