-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathtrainer.py
157 lines (121 loc) · 7.06 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
from abc import ABC, abstractmethod
import torch
from models.models import KnapsackExtractWeightsCostFromEmbeddingMLP, baseline_mlp_dict
from models.modules import get_solver_module, StaticConstraintModule, CvxpyModule, CombOptNetModule
from utils.utils import loss_from_string, optimizer_from_string, set_seed, AvgMeters, compute_metrics, \
knapsack_round, compute_normalized_solution, compute_denormalized_solution, solve_unconstrained
def get_trainer(trainer_name, **trainer_params):
trainer_dict = dict(MLPTrainer=MLPBaselineTrainer,
KnapsackConstraintLearningTrainer=KnapsackConstraintLearningTrainer,
RandomConstraintLearningTrainer=RandomConstraintLearningTrainer)
return trainer_dict[trainer_name](**trainer_params)
class BaseTrainer(ABC):
def __init__(self, train_iterator, test_iterator, use_cuda, optimizer_name, loss_name, optimizer_params, metadata,
model_params, seed):
set_seed(seed)
self.use_cuda = use_cuda
self.device = 'cuda' if self.use_cuda else 'cpu'
self.train_iterator = train_iterator
self.test_iterator = test_iterator
self.true_variable_range = metadata['variable_range']
self.num_variables = metadata['num_variables']
self.variable_range = self.true_variable_range
model_parameters = self.build_model(**model_params)
self.optimizer = optimizer_from_string(optimizer_name)(model_parameters, **optimizer_params)
self.loss_fn = loss_from_string(loss_name)
@abstractmethod
def build_model(self, **model_params):
pass
@abstractmethod
def calculate_loss_metrics(self, **data_params):
pass
def train_epoch(self):
self.train = True
metrics = AvgMeters()
for i, data in enumerate(self.train_iterator):
x, y_true_norm = [dat.to(self.device) for dat in data]
loss, metric_dct = self.calculate_loss_metrics(x=x, y_true_norm=y_true_norm)
metrics.update(metric_dct, n=x.size(0))
self.optimizer.zero_grad()
loss.backward(retain_graph=True)
self.optimizer.step()
results = metrics.get_averages(prefix='train_')
return results
def evaluate(self):
self.train = False
metrics = AvgMeters()
for i, data in enumerate(self.test_iterator):
x, y_true_norm = [dat.to(self.device) for dat in data]
loss, metric_dct = self.calculate_loss_metrics(x=x, y_true_norm=y_true_norm)
metrics.update(metric_dct, n=x.size(0))
results = metrics.get_averages(prefix='eval_')
return results
class MLPBaselineTrainer(BaseTrainer):
def build_model(self, model_name, **model_params):
self.model = baseline_mlp_dict[model_name](num_variables=self.num_variables, **model_params).to(
self.device)
return self.model.parameters()
def calculate_loss_metrics(self, x, y_true_norm):
y_norm = self.model(x=x)
loss = self.loss_fn(y_norm.double(), y_true_norm)
metrics = dict(loss=loss.item())
y_denorm = compute_denormalized_solution(y_norm, **self.variable_range)
y_denorm_rounded = torch.round(y_denorm)
y_true_denorm = compute_denormalized_solution(y_true_norm, **self.true_variable_range)
metrics.update(compute_metrics(y=y_denorm_rounded, y_true=y_true_denorm))
return loss, metrics
class ConstraintLearningTrainerBase(BaseTrainer, ABC):
@abstractmethod
def forward(self, x):
pass
def calculate_loss_metrics(self, x, y_true_norm):
y_denorm, y_denorm_roudned, solutions_denorm_dict, cost_vector = self.forward(x)
y_norm = compute_normalized_solution(y_denorm, **self.variable_range)
loss = self.loss_fn(y_norm.double(), y_true_norm)
metrics = dict(loss=loss.item())
y_uncon_denorm = solve_unconstrained(cost_vector=cost_vector, **self.variable_range)
y_true_denorm = compute_denormalized_solution(y_true_norm, **self.true_variable_range)
metrics.update(compute_metrics(y=y_denorm_roudned, y_true=y_true_denorm, y_uncon=y_uncon_denorm))
for prefix, solution in solutions_denorm_dict.items():
metrics.update(
compute_metrics(y=solution, y_true=y_true_denorm, y_uncon=y_uncon_denorm, prefix=prefix + "_"))
return loss, metrics
class RandomConstraintLearningTrainer(ConstraintLearningTrainerBase):
def build_model(self, constraint_module_params, solver_module_params):
self.static_constraint_module = StaticConstraintModule(variable_range=self.variable_range,
num_variables=self.num_variables,
**constraint_module_params).to(self.device)
self.solver_module = get_solver_module(variable_range=self.variable_range,
**solver_module_params).to(self.device)
self.ilp_solver_module = CombOptNetModule(variable_range=self.variable_range).to(self.device)
model_parameters = list(self.static_constraint_module.parameters()) + list(self.solver_module.parameters())
return model_parameters
def forward(self, x):
cost_vector = x
cost_vector = cost_vector / torch.norm(cost_vector, p=2, dim=-1, keepdim=True)
constraints = self.static_constraint_module()
y_denorm = self.solver_module(cost_vector=cost_vector, constraints=constraints)
y_denorm_rounded = torch.round(y_denorm)
solutions_dict = {}
if not self.train and isinstance(self.solver_module, CvxpyModule):
y_denorm_ilp = self.ilp_solver_module(cost_vector=cost_vector, constraints=constraints)
update_dict = dict(ilp_postprocess=y_denorm_ilp)
solutions_dict.update(update_dict)
return y_denorm, y_denorm_rounded, solutions_dict, cost_vector
class KnapsackConstraintLearningTrainer(ConstraintLearningTrainerBase):
def build_model(self, solver_module_params, backbone_module_params):
self.backbone_module = KnapsackExtractWeightsCostFromEmbeddingMLP(**backbone_module_params).to(self.device)
self.solver_module = get_solver_module(variable_range=self.variable_range,
**solver_module_params).to(self.device)
model_parameters = list(self.backbone_module.parameters()) + list(self.solver_module.parameters())
return model_parameters
def forward(self, x):
cost_vector, constraints = self.backbone_module(x)
cost_vector = cost_vector / torch.norm(cost_vector, p=2, dim=-1, keepdim=True)
y_denorm = self.solver_module(cost_vector=cost_vector, constraints=constraints)
if isinstance(self.solver_module, CvxpyModule):
y_denorm_rounded = knapsack_round(y_denorm=y_denorm, constraints=constraints,
knapsack_capacity=self.backbone_module.knapsack_capacity)
else:
y_denorm_rounded = y_denorm
return y_denorm, y_denorm_rounded, {}, cost_vector