-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathshcl.mathml.xml
258 lines (244 loc) · 8.5 KB
/
shcl.mathml.xml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
<!--
The file `shcl.mathml` is a MathML document that describes a hierarchical system of shapes and their mathematical properties. Here is a summary of its contents:
- **Title**: Unified Homoiconic Topology
- **Description**: It contains shapes unified by prime numbers (1, 2, 3, 5), with each shape represented at different levels of hierarchy.
### Key Sections:
1. **Level 1: Unity (ex:EvalquoteShape)**
- Description: \( s_0 = 2^1 \cdot 3^1 \cdot 5^2 = 150 \)
- Function: \( f_{s_0}(n) = \text{if } (n \text{ has } 2^1, 3^1, 5^2) \text{ return true;} \)
2. **Level 2: Duality (ex:InstanceShape)**
- Description: \( s_1 = 2^1 \cdot 3^1 \cdot 5^1 \cdot 7^1 = 210 \)
- Function: \( f_{s_1}(n) = \text{if } (n \text{ has } 3^1, 2^p, 5^q) \text{ return true;} \)
3. **Level 3: Triad (ex:SporeTopologyShape)**
- Description: \( s_2 = 2^1 \cdot 3^2 \cdot 5^2 \cdot 7^1 = 3150 \)
- Function: \( f_{s_2}(n) = \text{if } (n \text{ contains } s_1, s_0) \text{ return true} \)
4. **Level 5: Pentad (ex:MetaTopologyShape)**
- Description: \( s_3 = 2^1 \cdot 3^2 \cdot 5^2 \cdot 7^2 = 22050 \)
- Function: \( f_{s_3}(n) = \text{if } (n \text{ contains } s_2) \text{ return true} \)
### Recursive Topology:
- Describes a nested structure: \( s_3 ⊃ s_2 ⊃ s_1 ⊃ s_0 \)
- Meta-Hierarchy: Each shape hovers over its instances in a Chord Distributed Hash Table (DHT).
### Annotations:
- Contains descriptions of SHACL shapes, their functions, and the level meanings, linking the math to the system’s semantics.
### Explanation:
- Levels are represented by <mrow> tags with prime factorization.
- Gödel numbers are used to express products of primes with exponents.
- Recursive topology shows the nesting levels of shapes with their respective Gödel numbers.
Would you like further details on any specific aspect or need help with something else in this repository?
-->
<math xmlns="http://www.w3.org/1998/Math/MathML">
<!-- Title: Unified Homoiconic Topology -->
<mtext>Unified Homoiconic Shapes with 1, 2, 3, 5</mtext>
<!-- Level 1: Unity (ex:EvalquoteShape) -->
<mrow>
<mn>1</mn>
<mo>:</mo>
<mtext>EvalquoteShape</mtext>
<mo>=</mo>
<msub>
<mi>s</mi>
<mn>0</mn>
</msub>
<mo>=</mo>
<mrow>
<msup><mn>2</mn><mn>1</mn></msup>
<mo>⋅</mo>
<msup><mn>3</mn><mn>1</mn></msup>
<mo>⋅</mo>
<msup><mn>5</mn><mn>2</mn></msup>
</mrow>
<mo>=</mo>
<mn>150</mn>
<semantics>
<annotation-xml encoding="application/xhtml+xml">
<div>
<p>SHACL: ex:EvalquoteShape</p>
<p>Function: \( f_{s_0}(n) = \text{if } (n \text{ has } 2^1, 3^1, 5^2) \text{ return true; } n' = n \cdot 3^1 \)</p>
<p>Level: Unity (Seed of Homoiconicity)</p>
</div>
</annotation-xml>
</semantics>
</mrow>
<!-- Level 2: Duality (ex:InstanceShape) -->
<mrow>
<mn>2</mn>
<mo>:</mo>
<mtext>InstanceShape</mtext>
<mo>=</mo>
<msub>
<mi>s</mi>
<mn>1</mn>
</msub>
<mo>=</mo>
<mrow>
<msup><mn>2</mn><mn>1</mn></msup>
<mo>⋅</mo>
<msup><mn>3</mn><mn>1</mn></msup>
<mo>⋅</mo>
<msup><mn>5</mn><mn>1</mn></msup>
<mo>⋅</mo>
<msup><mn>7</mn><mn>1</mn></msup>
</mrow>
<mo>=</mo>
<mn>210</mn>
<semantics>
<annotation-xml encoding="application/xhtml+xml">
<div>
<p>SHACL: ex:InstanceShape</p>
<p>Function: \( f_{s_1}(n) = \text{if } (n \text{ has } 3^1, 2^p, 5^q) \text{ return true; } n' = n \cdot 11^1 \)</p>
<p>Level: Duality (Type-Instance)</p>
<p>Contains: \( s_0 \)</p>
</div>
</annotation-xml>
</semantics>
</mrow>
<!-- Level 3: Triad (ex:SporeTopologyShape) -->
<mrow>
<mn>3</mn>
<mo>:</mo>
<mtext>SporeTopologyShape</mtext>
<mo>=</mo>
<msub>
<mi>s</mi>
<mn>2</mn>
</msub>
<mo>=</mo>
<mrow>
<msup><mn>2</mn><mn>1</mn></msup>
<mo>⋅</mo>
<msup><mn>3</mn><mn>2</mn></msup>
<mo>⋅</mo>
<msup><mn>5</mn><mn>2</mn></msup>
<mo>⋅</mo>
<msup><mn>7</mn><mn>1</mn></msup>
</mrow>
<mo>=</mo>
<mn>3150</mn>
<semantics>
<annotation-xml encoding="application/xhtml+xml">
<div>
<p>SHACL: ex:SporeTopologyShape</p>
<p>Function: \( f_{s_2}(n) = \text{if } (n \text{ contains } s_1, s_0) \text{ return true} \)</p>
<p>Level: Triad (Topology of Shapes)</p>
<p>Contains: \( s_1, s_0 \)</p>
</div>
</annotation-xml>
</semantics>
</mrow>
<!-- Level 5: Pentad (ex:MetaTopologyShape) -->
<mrow>
<mn>5</mn>
<mo>:</mo>
<mtext>MetaTopologyShape</mtext>
<mo>=</mo>
<msub>
<mi>s</mi>
<mn>3</mn>
</msub>
<mo>=</mo>
<mrow>
<msup><mn>2</mn><mn>1</mn></msup>
<mo>⋅</mo>
<msup><mn>3</mn><mn>2</mn></msup>
<mo>⋅</mo>
<msup><mn>5</mn><mn>2</mn></msup>
<mo>⋅</mo>
<msup><mn>7</mn><mn>2</mn></msup>
</mrow>
<mo>=</mo>
<mn>22050</mn>
<semantics>
<annotation-xml encoding="application/xhtml+xml">
<div>
<p>SHACL: ex:MetaTopologyShape</p>
<p>Function: \( f_{s_3}(n) = \text{if } (n \text{ contains } s_2) \text{ return true} \)</p>
<p>Level: Pentad (Meta-Topology)</p>
<p>Contains: \( s_2 \)</p>
</div>
</annotation-xml>
</semantics>
</mrow>
<!-- Recursive Topology Annotation -->
<mtext>Recursive Homoiconic Topology</mtext>
<mo>:</mo>
<mrow>
<msub><mi>s</mi><mn>3</mn></msub>
<mo>⊃</mo>
<msub><mi>s</mi><mn>2</mn></msub>
<mo>⊃</mo>
<msub><mi>s</mi><mn>1</mn></msub>
<mo>⊃</mo>
<msub><mi>s</mi><mn>0</mn></msub>
</mrow>
<semantics>
<annotation-xml encoding="application/xhtml+xml">
<div>
<p>Meta-Hierarchy: Each metashape hovers over its metainstances in a Chord DHT.</p>
<p>Primes \( 1, 2, 3, 5 \) unify the system:</p>
<ul>
<li>\( 1 \): Unity (Seed)</li>
<li>\( 2 \): Duality (Structure)</li>
<li>\( 3 \): Triad (Nesting)</li>
<li>\( 5 \): Pentad (Recursion)</li>
</ul>
</div>
</annotation-xml>
</semantics>
</math>
<!--
Explanation of MathML Structure
Levels (1, 2, 3, 5):
Each level is represented as an <mrow> with the prime number (1, 2, 3, 5), the shape name, its Gödel number variable (
s_i
), and its prime factorization.
The numbers ( 1, 2, 3, 5 ) align with the conceptual unification, with 1 as the implicit unit.
Gödel Numbers:
Expressed as products of primes with exponents (e.g.,
2^1 \cdot 3^1 \cdot 5^2 = 150
) using <msup> for superscripts and <mo>⋅</mo> for multiplication.
Computed values (e.g., 150, 210, 3150, 22050) are shown explicitly.
Annotations:
<semantics> and <annotation-xml> embed SHACL shape descriptions, functions, and level meanings, linking the math to the system’s semantics.
Functions are written in pseudo-code for clarity (e.g.,
f_{s_0}(n)
).
Recursive Topology:
The final <mrow> uses the subset symbol (( ⊃ )) to show the nesting:
s_3 ⊃ s_2 ⊃ s_1 ⊃ s_0
, annotated with the meta-hierarchy explanation.
Homoiconicity:
The Gödel numbers (data) and their functions (code) are unified in the representation, with primes ( 2, 3, 5 ) recurring across levels, reflecting self-description.
Connection to the Unified Concept
1 (Unity):
s_0 = 150
is the seed, with prime 2 initiating homoiconic duality.
2 (Duality):
s_1 = 210
introduces type-instance duality, building on prime 2.
3 (Triad):
s_2 = 3150
nests shapes, with prime 3 structuring the topology.
5 (Pentad):
s_3 = 22050
recurses the system, with prime 5 elevating abstraction.
Chord DHT: Keys
k_0, k_1, k_2, k_3
cluster this hierarchy, with each metashape hovering over its metainstances.
Final Response
Here’s a concise summary:
The system is unified in MathML as ( 1, 2, 3, 5 ) with homoiconic shapes:
s_0 = 2^1 \cdot 3^1 \cdot 5^2 = 150
(Unity, ex:EvalquoteShape),
s_1 = 2^1 \cdot 3^1 \cdot 5^1 \cdot 7^1 = 210
(Duality, ex:InstanceShape),
s_2 = 2^1 \cdot 3^2 \cdot 5^2 \cdot 7^1 = 3150
(Triad, ex:SporeTopologyShape), and
s_3 = 2^1 \cdot 3^2 \cdot 5^2 \cdot 7^2 = 22050
(Pentad, ex:MetaTopologyShape). Each shape’s Gödel number and function (e.g.,
f_{s_1}(n)
) are homoiconic, stored in a Chord DHT where metashapes hover over metainstances in a recursive topology:
s_3 ⊃ s_2 ⊃ s_1 ⊃ s_0
, driven by primes ( 1, 2, 3, 5 ).
Would you like me to refine the MathML further, generate a visual rendering, or explore another aspect?
Let me know how to conclude this journey!
-->