forked from modons/LMR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLMR_lite.py
116 lines (93 loc) · 4.87 KB
/
LMR_lite.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
"""
This is a 'lite' version of the LMR driver for Python3. Consider it a wrapper on the basic LMR functionality so that the user is shielded from details, and can work at a higher level. It assumes that you have done the following:
* set up the configuration file config_lite.yml (a regular config.yml file)
* set up the PSMs and pre-built the Ye values that correspond to the chosen prior.
There are two examples:
(1) reconstruct a single year using two different solvers for the Kalman filter
(2) reconstruct a time period, and plot the result with instrumental analyses
The code can be easy extended and used in Jupyter notebooks. Note that there are other convenience functions in LMR_lite_utils.py not used here.
Originator:
Greg Hakim
University of Washington
26 February 2018
Modifications:
20 April 2018: added option for regridding of the prior (uses config settings) (GJH)
19 April 2018: added functionality for user-specified config file as a runtime option (GJH)
27 February 2018: added second example; bug fix in Ye call (GJH)
"""
import LMR_lite_utils as LMRlite
import LMR_utils
import LMR_config
import numpy as np
import os,sys
import time as clock
# check for user-specified config file; otherwise, use the one in the SRC directory
if len(sys.argv) > 1:
yaml_file = sys.argv[1]
else:
yaml_file = os.path.join(LMR_config.SRC_DIR,'config_lite.yml')
print('using this configuration file: '+yaml_file)
begin_time = clock.time()
#-----------------------------------------------------------------
# load components
#-----------------------------------------------------------------
print('loading configuration in your config_lite.yml file...')
cfg = LMRlite.load_config(yaml_file)
print('loading proxies...')
prox_manager = LMRlite.load_proxies(cfg)
print('loading prior...')
X, Xb_one = LMRlite.load_prior(cfg)
# check if config was set to regrid the prior
if cfg.prior.regrid_method:
print('regridding prior...')
# this function over-writes X, even if return is given a different name
[X,Xb_one] = LMRlite.prior_regrid(cfg,X,Xb_one,verbose=True)
else:
X.trunc_state_info = X.full_state_info
print('loading Ye...')
Ye_assim, Ye_assim_coords = LMR_utils.load_precalculated_ye_vals_psm_per_proxy(cfg, prox_manager,'assim',X.prior_sample_indices)
#-----------------------------------------------------------------
# example reconstruction for one year
#-----------------------------------------------------------------
target_year=cfg.core.recon_period[0]
print('performing a test reconstruction for year:' + str(target_year))
vY,vR,vP,vYe,vT,vYe_coords = LMRlite.get_valid_proxies(cfg,prox_manager,target_year,Ye_assim,Ye_assim_coords)
xam,Xap,_ = LMRlite.Kalman_optimal(vY,vR,vYe,Xb_one,verbose=False)
xam2,Xap2 = LMRlite.Kalman_ESRF(cfg,vY,vR,vYe,Xb_one,verbose=False)
print('ens mean max difference from different solvers...', str(np.max(np.abs((xam2-xam)/xam))))
#-----------------------------------------------------------------
# reconstruction over recon_period, computing GMT on the way
#-----------------------------------------------------------------
# set years to reconstruct
years = list(range(cfg.core.recon_period[0],cfg.core.recon_period[1]))
# make a grid object based on grid info in prior object
grid = LMRlite.make_grid(X)
gmt_save = np.zeros(len(years))
gmt_ens_save = np.zeros([len(years),grid.Nens])
yk = -1
for target_year in years:
yk = yk + 1
vY,vR,vP,vYe,vT,vYe_coords = LMRlite.get_valid_proxies(cfg,prox_manager,target_year,Ye_assim,Ye_assim_coords,verbose=False)
xam,Xap,_ = LMRlite.Kalman_optimal(vY,vR,vYe,Xb_one)
xam_lalo = np.reshape(xam,[grid.nlat,grid.nlon])
# GMT for the ensemble mean
gmt, nhmt, shmt = LMR_utils.global_hemispheric_means(xam_lalo,grid.lat[:, 0])
print('%s: gmt=%s nhmt=%s shmt=%s' %(str("{:4d}".format(target_year)), str("{:12.6f}".format(gmt[0])),
str("{:12.6f}".format(nhmt[0])), str("{:12.6f}".format(shmt[0]))))
gmt_save[yk] = gmt
# GMT for all ensemble members
for k in range(grid.Nens):
xam_lalo = np.reshape(Xap[:,k],[grid.nlat,grid.nlon])
gmt_ens_save[yk,k],_,_ = LMR_utils.global_hemispheric_means(xam_lalo, grid.lat[:, 0])
# numpy array for the years list
lmr_years = np.array(years)
# load GMT fields into dictionaries, add LMR ensemble mean, with specified reference and verification time periods
analysis_data,analysis_time,_,_ = LMRlite.load_analyses(cfg,full_field=False,lmr_gm=gmt_save,lmr_time=lmr_years,
satime=1900,eatime=2000,svtime=1880,evtime=2000)
# make a plot and save a figure
LMRlite.make_gmt_figure(analysis_data,analysis_time,fsave='lite_testing')
end_time = clock.time() - begin_time
print('')
print('-----------------------------------------------------')
print('Reconstruction completed in ' + str(end_time/60.0)+' mins')
print('-----------------------------------------------------')