forked from modons/LMR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLMR_wrapper.py
198 lines (161 loc) · 7.15 KB
/
LMR_wrapper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
"""
Module: LMR_wrapper.py
Purpose: Wrapper around the callable version of LMR_driver
prototype for Monte Carlo iterations
Options: None.
Experiment parameters defined through namelist,
passed through object called "state"
Originator: Greg Hakim | Dept. of Atmospheric Sciences, Univ. of Washington
| April 2015
Revisions:
- Adapted to OOP coding of proxy- and prior-related classes [A. Perkins, U. of Washington]
- Includes new parameter space search into iterations [A. Perkins, UW, Feb 2017]
- Added flag to control whether or not the analysis_Ye.pckl is generated. [G. Hakim, UW, Aug 2017]
- Added flag to control whether or not the full ensemble is output. [M. Erb, G. Hakim port, Aug 2017]
"""
import os
import numpy as np
import sys
import yaml
import itertools
import datetime
import LMR_driver_callable as LMR
import LMR_config
from LMR_utils import validate_config, ensemble_stats
import LMR_utils as Utils
print('\n' + str(datetime.datetime.now()) + '\n')
if not LMR_config.LEGACY_CONFIG:
if len(sys.argv) > 1:
yaml_file = sys.argv[1]
else:
yaml_file = os.path.join(LMR_config.SRC_DIR, 'config.yml')
try:
print('Loading configuration: {}'.format(yaml_file))
f = open(yaml_file, 'r')
yml_dict = yaml.load(f)
update_result = LMR_config.update_config_class_yaml(yml_dict,
LMR_config)
# Check that all yml params match value in LMR_config
if update_result:
raise SystemExit(
'Extra or mismatching values found in the configuration yaml'
' file. Please fix or remove them.\n Residual parameters:\n '
'{}'.format(update_result))
except IOError as e:
raise SystemExit(
('Could not locate {}. If use of legacy LMR_config usage is '
'desired then please change LEGACY_CONFIG to True'
'in LMR_wrapper.py.').format(yaml_file))
# Define main experiment output directory
iter_range = LMR_config.wrapper.iter_range
expdir = os.path.join(LMR_config.core.datadir_output, LMR_config.core.nexp)
arc_dir = os.path.join(LMR_config.core.archive_dir, LMR_config.core.nexp)
# Check if it exists, if not, create it
if not os.path.isdir(expdir):
os.system('mkdir {}'.format(expdir))
# Monte-Carlo approach: loop over iterations (range of iterations defined in
# namelist)
MCiters = range(iter_range[0], iter_range[1]+1)
param_iterables = [MCiters]
# get other parameters to sweep over in the reconstruction
param_search = LMR_config.wrapper.param_search
if param_search is not None:
# sort them by parameter name and combine into a list of iterables
sort_params = list(param_search.keys())
sort_params.sort(key=lambda x: x.split('.')[-1])
param_values = [param_search[key] for key in sort_params]
param_iterables = param_values + [MCiters]
for iter_and_params in itertools.product(*param_iterables):
iter_num = iter_and_params[-1]
cfg_dict = Utils.param_cfg_update('core.curr_iter', iter_num)
if LMR_config.wrapper.multi_seed is not None:
try:
curr_seed = LMR_config.wrapper.multi_seed[iter_num]
cfg_dict = Utils.param_cfg_update('core.seed', curr_seed,
cfg_dict=cfg_dict)
print('Setting current iteration seed: {}'.format(curr_seed))
except IndexError:
print('ERROR: multi_seed activated but current MC iteration out of'
' range for list of seed values provided in config.')
raise SystemExit(1)
itr_str = 'r{:d}'.format(iter_num)
# If parameter space search is being performed then set the current
# search space values and create a special sub-directory
if param_search is not None:
curr_param_values = iter_and_params[:-1]
cfg_dict, psearch_dir = Utils.psearch_list_cfg_update(sort_params,
curr_param_values,
cfg_dict=cfg_dict)
working_dir = os.path.join(expdir, psearch_dir, itr_str)
mc_arc_dir = os.path.join(arc_dir, psearch_dir, itr_str)
else:
working_dir = os.path.join(expdir, itr_str)
mc_arc_dir = os.path.join(arc_dir, itr_str)
cfg_params = Utils.param_cfg_update('core.datadir_output', working_dir,
cfg_dict=cfg_dict)
cfg = LMR_config.Config(**cfg_params)
proceed = validate_config(cfg)
if not proceed:
raise SystemExit()
else:
print('OK!')
core = cfg.core
# Check if it exists, if not create it
if not os.path.isdir(core.datadir_output):
os.makedirs(core.datadir_output)
elif os.path.isdir(core.datadir_output) and core.clean_start:
print (' **** clean start --- removing existing files in iteration'
' output directory')
os.system('rm -f {}'.format(core.datadir_output + '/*'))
# Call the driver
assim_proxy_objs, eval_proxy_objs = LMR.LMR_driver_callable(cfg)
# write the analysis ensemble mean, variance or full ensemble to
# separate files (per state variable)
ensemble_stats(core, assim_proxy_objs, eval_proxy_objs)
# start: DO NOT DELETE
# move files from local disk to an archive location
# scrub the monte carlo subdirectory if this is a clean start
if os.path.isdir(mc_arc_dir):
if core.clean_start:
print (' **** clean start --- removing existing files in'
' iteration output directory')
os.system('rm -f -r {}'.format(mc_arc_dir + '/*'))
else:
os.makedirs(mc_arc_dir)
# remove the individual years
# cmd = 'rm -f ' + core.datadir_output + '/year* '
# option to move the whole directory
# cmd = 'mv -f ' + loc_dir + ' ' + mc_dir
# print cmd
# os.system(cmd)
# or just move select files and delete the rest
cmd = 'mv -f ' + working_dir + '/*.npz' + ' ' + mc_arc_dir + '/'
print(cmd)
os.system(cmd)
cmd = 'mv -f ' + working_dir + '/*.pckl' + ' ' + mc_arc_dir + '/'
print(cmd)
os.system(cmd)
cmd = 'mv -f ' + working_dir + '/assim*' + ' ' + mc_arc_dir + '/'
print(cmd)
os.system(cmd)
cmd = 'mv -f ' + working_dir + '/nonassim*' + ' ' + mc_arc_dir + '/'
print(cmd)
os.system(cmd)
# copy file containing info on samples defining the prior ensemble
cmd = 'mv -f ' + working_dir + '/prior_sampling_info.txt' + ' ' + mc_arc_dir + '/'
print(cmd)
os.system(cmd)
# removing the work output directory once selected files have been moved
cmd = 'rm -f -r ' + working_dir
print(cmd)
os.system(cmd)
# copy the configuration file to archive directory
if LMR_config.LEGACY_CONFIG:
cmd = 'cp ./LMR_config.py ' + mc_arc_dir + '/'
else:
cmd = 'cp ' + yaml_file + ' ' + mc_arc_dir + '/'
print(cmd)
os.system(cmd)
print('\n' + str(datetime.datetime.now()) + '\n')
# end: DO NOT DELETE
# ==============================================================================