-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathClassWDTS_Adv.py
218 lines (197 loc) · 11.6 KB
/
ClassWDTS_Adv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from utils_local import evaluate_data_classifier, loop_iterable, set_requires_grad, gradient_penalty, format_list, \
compute_diff_label, set_lr
from proportion_estimators import estimate_proportion
class WDTS_Adv(object):
def __init__(self, feat_extractor, data_classifier, domain_classifier, source_data_loader, target_data_loader,
grad_scale=1.0, cuda=False, logger=None, n_class=10, ts=1, dataset="digits", compute_cluster_every=5,
epoch_start_align=11, cluster_param="ward", epoch_start_g=30, n_epochs=100, gamma=10, init_lr=0.001, iter=0,
iter_domain_classifier=10, factor_f=1, lr_g_weight=1.0, lr_f_weight=1.0, lr_d_weight=1.0, factor_g=1.0,
eval_data_loader=None, proportion_T_gt=None, setting=10, beta_ratio=-1, proportion_S=None):
self.feat_extractor = feat_extractor
self.data_classifier = data_classifier
self.setting = setting
self.iter = iter
self.proportion_T_gt = proportion_T_gt
self.domain_classifier = domain_classifier
self.source_data_loader = source_data_loader
self.target_data_loader = target_data_loader
self.eval_data_loader = eval_data_loader
self.n_class = n_class
self.lr_g_weight = lr_g_weight
self.lr_f_weight = lr_f_weight
self.lr_d_weight = lr_d_weight
self.proportion_S = proportion_S
self.cuda = cuda
self.n_epochs = n_epochs
self.criterion = nn.CrossEntropyLoss()
self.epoch_start_align = epoch_start_align
self.epoch_start_g = epoch_start_g
self.iter_domain_classifier = iter_domain_classifier
self.gamma = gamma
self.grad_scale = grad_scale
self.proportion_method = "confusion"
self.logger = logger
self.cluster_step = compute_cluster_every
self.init_lr = init_lr
self.ts = ts
self.dataset = dataset
self.cluster_param = cluster_param
self.prop_factor = 0.5
self.factor_f = factor_f
self.factor_g = factor_g
self.optimizer_feat_extractor = optim.SGD(self.feat_extractor.parameters(), lr=0.001)
self.optimizer_data_classifier = optim.SGD(self.data_classifier.parameters(), lr=0.001)
self.optimizer_domain_classifier = optim.SGD(self.domain_classifier.parameters(), lr=0.01)
self.beta_ratio = beta_ratio
def fit(self):
if self.cuda:
self.feat_extractor.cuda()
self.data_classifier.cuda()
self.domain_classifier.cuda()
self.device = 'cuda'
else:
self.device = 'cpu'
k_critic = self.iter_domain_classifier
k_prop = 1
gamma = self.gamma
self.print_start = True
self.print_start_g = True
proportion_T = torch.ones(self.n_class) / self.n_class
if self.beta_ratio == -1:
self.hist_proportion = proportion_T.numpy()
# Train latent space
self.logger.info("--Initialize f, g--")
for epoch in range(self.n_epochs):
self.recluster = ((self.epoch_start_g > epoch > self.epoch_start_align and ((epoch - self.epoch_start_align) % 2) == 0) or
(epoch == self.epoch_start_g) or (epoch >= self.epoch_start_g and (epoch % self.cluster_step) == 0))
self.align = (epoch >= self.epoch_start_align)
S_batches = loop_iterable(self.source_data_loader)
batch_iterator = zip(S_batches, loop_iterable(self.target_data_loader))
batch_iterator_w = zip(S_batches, loop_iterable(self.target_data_loader))
iterations = len(self.source_data_loader)
if self.align:
if self.print_start:
self.logger.info("--Start Alignment--")
self.print_start = False
dist_loss_tot, clf_loss_tot_s, loss_tot, wass_loss_tot = 0, 0, 0, 0
self.feat_extractor.train()
self.data_classifier.train()
if self.align:
self.domain_classifier.train()
if self.recluster and self.beta_ratio == -1:
# Estimate proportion
if self.proportion_method == "gt":
proportion_T = self.proportion_T_gt
else:
self.logger.info(f"k_prop: {k_prop}")
proportion_T = estimate_proportion(self, k_prop=k_prop, proportion_T=proportion_T, comment=f"{self.ts}_adv_estim_{epoch}")
if epoch >= self.epoch_start_g:
k_prop += 1
elif epoch > self.epoch_start_align + 1:
k_prop = 2
self.hist_proportion = np.vstack((self.hist_proportion, proportion_T.numpy()))
compute_diff_label(self, self.proportion_T_gt, comment=f"pT(Y) {self.proportion_method}")
for batch_idx in range(iterations):
(x_s, y_s), (x_t, y_t) = next(batch_iterator)
x_s, x_t, y_s, y_t = x_s.to(self.device), x_t.to(self.device), y_s.to(self.device), y_t.to(self.device)
dist_loss, clf_s_loss = torch.zeros(1).to(self.device), torch.zeros(1).to(self.device)
if self.align:
# Set lr
p = (batch_idx + (epoch - self.epoch_start_align) * len(self.source_data_loader)) / (
len(self.source_data_loader) * (self.n_epochs - self.epoch_start_align))
lr = float(self.init_lr / (1. + 10 * p) ** 0.75)
set_lr(self.optimizer_domain_classifier, lr * self.lr_d_weight)
set_lr(self.optimizer_data_classifier, lr * self.lr_f_weight)
set_lr(self.optimizer_feat_extractor, lr * self.lr_g_weight)
if self.beta_ratio == -1:
source_weight_un = torch.zeros((y_s.size(0), 1)).to(self.device)
Ns_class = torch.zeros((self.n_class, 1)).to(self.device)
Nt_class = torch.zeros((self.n_class, 1)).to(self.device)
for j in range(self.n_class):
nb_sample = y_s.eq(j).nonzero().size(0)
if self.beta_ratio == -1:
source_weight_un[y_s == j] = proportion_T[j].to(self.device) / nb_sample
Ns_class[j] = nb_sample
Nt_class[j] = y_t.eq(j).nonzero().size(0)
#######################
# Train discriminator #
#######################
set_requires_grad(self.feat_extractor, requires_grad=False)
set_requires_grad(self.domain_classifier, requires_grad=True)
for kk in range(k_critic):
(x_s_w, y_s_w), (x_t_w, _) = next(batch_iterator_w)
x_s_w, x_t_w, y_s_w = x_s_w.to(self.device), x_t_w.to(self.device), y_s_w.to(self.device)
if self.beta_ratio == -1:
source_weight_un_w = torch.zeros((y_s_w.size(0), 1)).to(self.device)
for j in range(self.n_class):
nb_sample = y_s_w.eq(j).nonzero().size(0)
source_weight_un_w[y_s_w == j] = proportion_T[j].to(self.device) / nb_sample
with torch.no_grad():
z_w = self.feat_extractor(torch.cat((x_s_w, x_t_w), 0))
s_w = z_w[:x_s_w.shape[0]]
t_w = z_w[x_s_w.shape[0]:]
gp = gradient_penalty(self.domain_classifier, s_w, t_w, self.cuda)
critic_w = self.domain_classifier(torch.cat((s_w, t_w), 0))
critic_s_w, critic_t_w = critic_w[:x_s.shape[0]], critic_w[x_s.shape[0]:]
if self.beta_ratio == -1:
wasserstein_distance_w = (critic_s_w * source_weight_un_w.detach()).sum() - critic_t_w.mean()
else:
wasserstein_distance_w = (critic_s_w.mean() - (1 + self.beta_ratio) * critic_t_w.mean())
critic_cost = - wasserstein_distance_w + gamma * gp
self.optimizer_domain_classifier.zero_grad()
critic_cost.backward()
self.optimizer_domain_classifier.step()
wass_loss_tot += wasserstein_distance_w.item()
##############
# Train f, g #
##############
set_requires_grad(self.data_classifier, requires_grad=True)
set_requires_grad(self.feat_extractor, requires_grad=True)
set_requires_grad(self.domain_classifier, requires_grad=False)
z = self.feat_extractor(torch.cat((x_s, x_t), 0))
# Classif
if self.beta_ratio == -1:
self.criterion = nn.CrossEntropyLoss(weight=torch.FloatTensor(proportion_T / self.proportion_S).to(self.device))
else:
self.criterion = nn.CrossEntropyLoss()
clf_s_loss = self.criterion(self.data_classifier(z[:x_s.shape[0]]), y_s)
# Alignment
critic = self.domain_classifier(z)
critic_s, critic_t = critic[:x_s.shape[0]], critic[x_s.shape[0]:]
if self.beta_ratio == -1:
dist_loss = self.grad_scale * ((critic_s * source_weight_un.detach()).sum() - critic_t.mean())
else:
dist_loss = self.grad_scale * (critic_s.mean() - (1 + self.beta_ratio) * critic_t.mean())
loss = clf_s_loss + dist_loss
self.optimizer_data_classifier.zero_grad()
self.optimizer_feat_extractor.zero_grad()
loss.backward()
self.optimizer_data_classifier.step()
self.optimizer_feat_extractor.step()
else:
set_requires_grad(self.data_classifier, requires_grad=True)
set_requires_grad(self.feat_extractor, requires_grad=True)
z = self.feat_extractor(torch.cat((x_s, x_t), 0))
self.criterion = nn.CrossEntropyLoss()
clf_s_loss = self.criterion(self.data_classifier(z[:x_s.shape[0]]), y_s)
loss = clf_s_loss
self.optimizer_feat_extractor.zero_grad()
self.optimizer_data_classifier.zero_grad()
loss.backward()
self.optimizer_feat_extractor.step()
self.optimizer_data_classifier.step()
loss_tot += loss.item()
clf_loss_tot_s += clf_s_loss.item()
dist_loss_tot += dist_loss.item()
comment = f"WDTS_ADV {self.proportion_method}" if self.beta_ratio == -1 else f"WDGRL b={self.beta_ratio}"
self.logger.info('{} {} {} s{} Iter {} Epoch {}/{} \tTotal: {:.6f} L_S: {:.6f} DistL:{:.6f} WassL:{:.6f}'.format(self.ts,
comment, self.dataset, self.setting, self.iter, epoch, self.n_epochs, loss_tot, clf_loss_tot_s, dist_loss_tot, wass_loss_tot))
if (epoch + 1) % 5 == 0:
evaluate_data_classifier(self, self.source_data_loader, is_target=False, verbose=False)
evaluate_data_classifier(self, self.eval_data_loader, is_target=True)
if self.beta_ratio == -1:
self.logger.info(f"pT(Y) {self.proportion_method}: {format_list(proportion_T, 4)}")