-
Notifications
You must be signed in to change notification settings - Fork 926
/
Copy pathmain.py
121 lines (95 loc) · 3.54 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import time
from argparse import ArgumentParser
from functools import partial
import mlx.core as mx
import mlx.nn as nn
import mlx.optimizers as optim
from datasets import load_data, train_val_test_mask
from mlx.utils import tree_flatten
from gcn import GCN
def loss_fn(y_hat, y, weight_decay=0.0, parameters=None):
l = mx.mean(nn.losses.cross_entropy(y_hat, y))
if weight_decay != 0.0:
assert parameters != None, "Model parameters missing for L2 reg."
l2_reg = sum(mx.sum(p[1] ** 2) for p in tree_flatten(parameters)).sqrt()
return l + weight_decay * l2_reg
return l
def eval_fn(x, y):
return mx.mean(mx.argmax(x, axis=1) == y)
def forward_fn(gcn, x, adj, y, train_mask, weight_decay):
y_hat = gcn(x, adj)
loss = loss_fn(y_hat[train_mask], y[train_mask], weight_decay, gcn.parameters())
return loss, y_hat
def main(args):
# Data loading
x, y, adj = load_data(args)
train_mask, val_mask, test_mask = train_val_test_mask()
gcn = GCN(
x_dim=x.shape[-1],
h_dim=args.hidden_dim,
out_dim=args.nb_classes,
nb_layers=args.nb_layers,
dropout=args.dropout,
bias=args.bias,
)
mx.eval(gcn.parameters())
optimizer = optim.Adam(learning_rate=args.lr)
state = [gcn.state, optimizer.state, mx.random.state]
@partial(mx.compile, inputs=state, outputs=state)
def step():
loss_and_grad_fn = nn.value_and_grad(gcn, forward_fn)
(loss, y_hat), grads = loss_and_grad_fn(
gcn, x, adj, y, train_mask, args.weight_decay
)
optimizer.update(gcn, grads)
return loss, y_hat
best_val_loss = float("inf")
cnt = 0
# Training loop
for epoch in range(args.epochs):
tic = time.time()
loss, y_hat = step()
mx.eval(state)
# Validation
val_loss = loss_fn(y_hat[val_mask], y[val_mask])
val_acc = eval_fn(y_hat[val_mask], y[val_mask])
toc = time.time()
# Early stopping
if val_loss < best_val_loss:
best_val_loss = val_loss
cnt = 0
else:
cnt += 1
if cnt == args.patience:
break
print(
" | ".join(
[
f"Epoch: {epoch:3d}",
f"Train loss: {loss.item():.3f}",
f"Val loss: {val_loss.item():.3f}",
f"Val acc: {val_acc.item():.2f}",
f"Time: {1e3*(toc - tic):.3f} (ms)",
]
)
)
# Test
test_y_hat = gcn(x, adj)
test_loss = loss_fn(y_hat[test_mask], y[test_mask])
test_acc = eval_fn(y_hat[test_mask], y[test_mask])
print(f"Test loss: {test_loss.item():.3f} | Test acc: {test_acc.item():.2f}")
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument("--nodes_path", type=str, default="cora/cora.content")
parser.add_argument("--edges_path", type=str, default="cora/cora.cites")
parser.add_argument("--hidden_dim", type=int, default=20)
parser.add_argument("--dropout", type=float, default=0.5)
parser.add_argument("--nb_layers", type=int, default=2)
parser.add_argument("--nb_classes", type=int, default=7)
parser.add_argument("--bias", type=bool, default=True)
parser.add_argument("--lr", type=float, default=0.001)
parser.add_argument("--weight_decay", type=float, default=0.0)
parser.add_argument("--patience", type=int, default=20)
parser.add_argument("--epochs", type=int, default=100)
args = parser.parse_args()
main(args)