-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerative_ret.py
310 lines (253 loc) · 12 KB
/
generative_ret.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
import json
import logging
import os
import pickle
import torch
from torch.utils.data import DataLoader, RandomSampler
from torch.nn.utils.rnn import pad_sequence
from tqdm import tqdm
from trainer import Trainer
from options import setup_args
from utils.utils import Dialprocessor
from transformers import WEIGHTS_NAME, AutoTokenizer
from models.modeling import GraphConstraintLogitsProcessor, KnowledgeGenerator
from transformers import LogitsProcessorList
import re
from utils.trie import Trie
logger = logging.getLogger(__name__)
os.environ["TOKENIZERS_PARALLELISM"] = "false"
WEIGHTS_NAME = "pytorch_model.bin"
os.environ['CUDA_LAUNCH_BLOCKING'] = "1"
class DataModule:
"""Handles all data loading and processing operations"""
def __init__(self, args):
self.args = args
self.processor = Dialprocessor(args, stage="retrieval")
def load_examples(self, fold):
"""Load and process examples for given fold"""
if fold == "train":
features = self.processor.get_train_examples(self.args.data_dir)
elif fold == "dev":
features = self.processor.get_dev_examples(self.args.data_dir)
else:
features = self.processor.get_test_examples(self.args.data_dir)
dataloader = self._create_dataloader(features, fold)
return dataloader
def _create_dataloader(self, features, fold):
"""Create appropriate dataloader based on fold"""
if fold == "train":
sampler = RandomSampler(features)
batch_size = self.args.train_batch_size
else:
sampler = None
batch_size = self.args.eval_batch_size
return DataLoader(
features,
sampler=sampler,
batch_size=batch_size,
collate_fn=self._collate_fn,
num_workers=4
)
def _collate_fn(self, batch):
"""Collate batch of examples into model inputs"""
def create_padded_sequence(target, padding_value):
"""Create padded sequence from target"""
if isinstance(target, str):
tensors = [torch.tensor(getattr(o[1], target), dtype=torch.long) for o in batch]
elif isinstance(target, tuple):
tensors = target
else:
tensors = [torch.tensor(o, dtype=torch.long) for o in target]
return pad_sequence(tensors, batch_first=True, padding_value=padding_value)
dialog_history_ids, output_ids, episode_id, turn_id, entities = zip(*batch)
filtered_dialog_history_ids = []
filtered_output_ids = []
filtered_entities = []
filtered_episode_id = []
filtered_turn_id = []
for dhi, oi, ei, eid, tid in zip(dialog_history_ids, output_ids, entities, episode_id, turn_id):
if oi is not None and (len(ei) > 0):
if ei[0] == "":
continue
filtered_dialog_history_ids.append(dhi)
filtered_output_ids.append(oi)
filtered_entities.append(ei)
filtered_episode_id.append(eid)
filtered_turn_id.append(tid)
dialog_history_ids = create_padded_sequence(filtered_dialog_history_ids, 0)
output_ids = create_padded_sequence(filtered_output_ids, 0)
src_knowledge_ids = output_ids[:, :-1]
trg_knowledge_ids = output_ids[:, 1:]
trg_knowledge_ids = trg_knowledge_ids.masked_fill(trg_knowledge_ids == 0, 0)
enc_mask = torch.sign(dialog_history_ids)
dec_mask = torch.sign(src_knowledge_ids)
dec_mask[:, 0] = 1
return {
"input_ids": dialog_history_ids,
"attention_mask": enc_mask,
"decoder_input_ids": src_knowledge_ids,
"decoder_attention_mask": dec_mask,
"labels": trg_knowledge_ids,
"episode_id": filtered_episode_id,
"turn_id": filtered_turn_id,
"entities": filtered_entities,
}
class KnowledgeGen:
"""Handles model evaluation"""
def __init__(self, args, tokenizer, train_trie, valid_trie, test_trie):
self.args = args
self.tokenizer = tokenizer
self.train_trie = train_trie
self.valid_trie = valid_trie
self.test_trie = test_trie
def generate(self, model, dataloader, fold="dev"):
def create_padded_sequence(target, padding_value):
if isinstance(target, str):
tensors = [torch.tensor(getattr(o[1], target), dtype=torch.long) for o in batch]
elif isinstance(target, tuple):
tensors = target
else:
tensors = [torch.tensor(o, dtype=torch.long) for o in target]
return pad_sequence(tensors, batch_first=True, padding_value=padding_value)
def extract_triplets(sentence):
def generate_patterns(num_hops=1):
basic_pattern_list = []
basic_pattern = r'\[HEAD\]\s*(.*?)\[Int\d\_\d\]\[Int\d\_\d\]\s*(.*?)\[Int\d\_\d\]\[Int\d\_\d\]\s*(.*?)'
basic_pattern_list.append(basic_pattern)
basic_pattern = r'\[HEAD\]\s*(.*?)\[Rev\d\_\d\]\[Rev\d\_\d\]\s*(.*?)\[Rev\d\_\d\]\[Rev\d\_\d\]\s*(.*?)'
basic_pattern_list.append(basic_pattern)
for _ in range(num_hops-1):
new_basic_pattern_list = []
for bp in basic_pattern_list:
new_basic_pattern_list.append(bp + r'\[Int\d\_\d\]\[Int\d\_\d\]\s*(.*?)\[Int\d\_\d\]\[Int\d\_\d\]\s*(.*?)')
new_basic_pattern_list.append(bp + r'\[Rev\d\_\d\]\[Rev\d\_\d\]\s*(.*?)\[Rev\d\_\d\]\[Rev\d\_\d\]\s*(.*?)')
basic_pattern_list = new_basic_pattern_list
basic_pattern_list = [bp + r'\[TAIL\]' for bp in basic_pattern_list]
return basic_pattern_list
pattern1 = generate_patterns(1)
pattern2 = generate_patterns(2)
for idx, p in enumerate(pattern2):
hop2_triplet = re.findall(p, sentence)
if len(hop2_triplet) != 0:
curr_triplet = hop2_triplet[0]
h, r1, e1, r2, e2 = curr_triplet
if idx == 0:
hop2_triplet = [(h,r1,e1), (e1,r2,e2)]
elif idx == 1:
hop2_triplet = [(h,r1,e1), (e2,r2,e1)]
elif idx == 2:
hop2_triplet = [(e1,r1,h), (e1,r2,e2)]
elif idx == 3:
hop2_triplet = [(e1,r1,h), (e2,r2,e1)]
return hop2_triplet
for idx, p in enumerate(pattern1):
hop1_triplet = re.findall(p, sentence)
if len(hop1_triplet) != 0:
if idx == 1:
hop1_triplet = [(hop1_triplet[0][2], hop1_triplet[0][1], hop1_triplet[0][0])]
return hop1_triplet
return []
test_hyp, test_ref = [], []
dataset_ptr = 0
model.eval()
for batch in tqdm(dataloader, desc="Eval"):
gen_inputs = {k: v.to(self.args.device) for k, v in batch.items() \
if k in ['input_ids','attention_mask']}
gen_inputs["max_new_tokens"] = 128
gen_inputs["num_beams"] = 5
gen_inputs["early_stopping"] = True
gen_inputs["use_cache"] = True
gen_inputs["do_sample"] = False
gen_inputs["top_p"] = 0.9
gen_inputs["return_dict_in_generate"] = True
if fold == "train":
trie = self.train_trie
elif fold == "dev":
trie = self.valid_trie
elif fold == "test":
trie = self.test_trie
else:
raise ValueError(f"Invalid fold: {fold}")
trie_list = []
for ei, ti in zip(batch['episode_id'], batch['turn_id']):
trie_list.append(trie[ei][ti])
if trie[ei][ti] is None:
import pdb; pdb.set_trace()
def load_const(batch_id, sent):
if trie_list[batch_id] is None:
return None
else:
return trie_list[batch_id].get(sent)
logit_processor = LogitsProcessorList([GraphConstraintLogitsProcessor(prefix_allowed_tokens_fn=lambda batch_id, sent: load_const(batch_id ,sent.tolist()), num_beams=gen_inputs["num_beams"], args=self.args)])
gen_inputs["logits_processor"] = logit_processor
with torch.no_grad():
if hasattr(model, "module"):
outputs = model.module.knowledge_generator.generate(**gen_inputs, output_scores=True, num_return_sequences=5)
else:
outputs = model.knowledge_generator.generate(**gen_inputs, output_scores=True, num_return_sequences=5)
seq = outputs.sequences
seq_nlp = self.tokenizer.batch_decode(seq)
seq_paths = [extract_triplets(sent) for sent in seq_nlp]
path_list = []
for sp in seq_paths:
path_list.append(sp)
path_list = [list(set(p)) for p in path_list]
import pdb; pdb.set_trace()
return
class ModelManager:
"""Handles model initialization and training"""
def __init__(self, args):
self.args = args
self.best_dev_score = 0.0
def initialize_model(self):
"""Initialize model and tokenizer"""
tokenizer = AutoTokenizer.from_pretrained("t5-small")
self.args.tokenizer = tokenizer
model = KnowledgeGenerator(self.args)
# unsup_checkpoint = torch.load(os.path.join(self.args.output_dir, "unsup/training_args.bin"), map_location="cpu")
#
# model.knowledge_generator.new_embed.weight.data = unsup_checkpoint['encoder.new_embed.weight']
# model.knowledge_generator.encoder.new_embed.weight.data = unsup_checkpoint['encoder.new_embed.weight']
# model.knowledge_generator.decoder.new_embed.weight.data = unsup_checkpoint['encoder.new_embed.weight']
return model, tokenizer
def load_trie():
with open("/hub_data1/jinyoungp/mhkp_public/data/trie_test.pkl", 'rb') as f:
test_trie = pickle.load(f)
with open("/hub_data1/jinyoungp/mhkp_public/data/trie_valid.pkl", 'rb') as f:
valid_trie = pickle.load(f)
with open("/hub_data1/jinyoungp/mhkp_public/data/trie_train.pkl", 'rb') as f:
train_trie = pickle.load(f)
return train_trie, valid_trie, test_trie
def run(args):
"""Main training loop"""
args.device = "cuda" if torch.cuda.is_available() else "cpu"
# Initialize components
data_module = DataModule(args)
model_manager = ModelManager(args)
model, tokenizer = model_manager.initialize_model()
model.to(args.device)
train_dataloader = data_module.load_examples("train")
num_train_steps_per_epoch = len(train_dataloader)
num_train_steps = int(num_train_steps_per_epoch * args.num_train_epochs)
num_train_steps = 1
# Train model
trainer = Trainer(
args,
model=model,
dataloader=train_dataloader,
num_train_steps=num_train_steps,
)
trainer.train()
# Final evaluation
train_trie, valid_trie, test_trie = load_trie()
knoweldge_generator = KnowledgeGen(args, tokenizer, train_trie, valid_trie, test_trie)
model.to(args.device)
train_dataloader = data_module.load_examples("train")
knoweldge_generator.generate(model, train_dataloader, "train")
valid_dataloader = data_module.load_examples("dev")
knoweldge_generator.generate(model, valid_dataloader, "dev")
test_dataloader = data_module.load_examples("test")
knoweldge_generator.generate(model, test_dataloader, "test")
if __name__ == "__main__":
args = setup_args()
run(args)