-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathLMR_convertNPZtoNETCDF_gmt.py
152 lines (114 loc) · 4.86 KB
/
LMR_convertNPZtoNETCDF_gmt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
"""
Module: LMR_convertNPZtoNETCDF_gmt.py
Purpose: Converts LMR output from .npz files to netcdf files.
Now restricted to gmt reconstruction variables, for every
Monte-Carlo realization included in the experiment.
Originator: Robert Tardif | Univ. of Washington, Dept. of Atmospheric Sciences
Michael Erb | University of Southern California
| June 2017
Revisions: None
"""
import glob
import numpy as np
from netCDF4 import Dataset
# LMR-specific import
from LMR_utils import natural_sort
# --- Begin section of user-defined parameters ---
# name of directory where the output of LMR experiments are located
#datadir = '/home/disk/ekman4/rtardif/LMR/output'
datadir = '/home/disk/kalman3/rtardif/LMR/output'
#datadir = '/home/scec-00/lmr/erbm/LMR/archive_output/older_experiments'
# name of the experiment
nexp = 'test'
# --- End section of user-defined parameters ---
expdir = datadir + '/'+nexp
# where the netcdf files are created
outdir = expdir
print('\n Getting information on Monte-Carlo realizations...\n')
dirs = glob.glob(expdir+"/r*")
# keep names of MC directories (i.r. "r...") only
mcdirs = [item.split('/')[-1] for item in dirs]
# Make sure list is properly sorted
mcdirs = natural_sort(mcdirs)
# number of MC realizations found
niters = len(mcdirs)
print('mcdirs:' + str(mcdirs))
print('niters = ' + str(niters))
print('\n Getting information on reconstructed variables...\n')
# look in first "mcdirs" only. It should be the same for all.
workdir = expdir+'/'+mcdirs[0]
print('\n Global-mean temperature file.')
# Loop over realizations
r = 0
for dir in mcdirs:
fname = expdir+'/'+dir+'/gmt_ensemble.npz'
npzfile = np.load(fname)
# Get the reconstructed field
gmt_values = npzfile['gmt_ensemble']
nhmt_values = npzfile['nhmt_ensemble']
shmt_values = npzfile['shmt_ensemble']
if r == 0: # first realization
npzcontent = npzfile.files
print(' file contents:', npzcontent)
# get the years in the reconstruction
years = npzfile['recon_times']
# no spatial coordinate, must be a scalar (time series)
field_type='1D:time_series'
print(' field type:', field_type)
# declare master array that will contain data from all the M-C realizations
# (i.e. the "Monte-Carlo ensemble")
dims = gmt_values.shape
print(' gmt field dimensions', dims)
tmp_gmt = np.expand_dims(gmt_values, axis=0)
tmp_nhmt = np.expand_dims(nhmt_values, axis=0)
tmp_shmt = np.expand_dims(shmt_values, axis=0)
# Form the array with the right total dimensions
mc_ens_gmt = np.repeat(tmp_gmt,niters,axis=0)
mc_ens_nhmt = np.repeat(tmp_nhmt,niters,axis=0)
mc_ens_shmt = np.repeat(tmp_shmt,niters,axis=0)
else:
mc_ens_gmt[r,:,:] = gmt_values
mc_ens_nhmt[r,:,:] = nhmt_values
mc_ens_shmt[r,:,:] = shmt_values
r = r + 1
# Roll array to get dims as [time, niters, nens]
mc_ens_outarr_gmt = np.swapaxes(mc_ens_gmt,0,1)
mc_ens_outarr_nhmt = np.swapaxes(mc_ens_nhmt,0,1)
mc_ens_outarr_shmt = np.swapaxes(mc_ens_shmt,0,1)
# Create the netcdf file for the current variable
outfile_nc = outdir+'/gmt_ensemble_MCiters.nc'
outfile = Dataset(outfile_nc, 'w', format='NETCDF4')
outfile.description = 'LMR climate reconstruction for global-mean, NH-mean, and SH-mean surface air temperature (K).'
outfile.experiment = nexp
outfile.comment = 'File contains all ensemble values (ensemble_member) for each Monte-Carlo realization (iteration_member)'
# define dimensions
ntime = years.shape[0]
nensemble = mc_ens_outarr_gmt.shape[2]
outfile.createDimension('time', ntime)
outfile.createDimension('iteration_member', niters)
outfile.createDimension('ensemble_member', nensemble)
# define variables & upload the data to file
# time
time = outfile.createVariable('time', 'i', ('time',))
time.description = 'time'
time.long_name = 'year CE'
# reconstructed fields
varout_gmt = outfile.createVariable('gmt', 'f', ('time','iteration_member','ensemble_member'))
varout_gmt.description = 'gmt'
varout_gmt.long_name = 'Global-mean surface air temperature anomaly'
varout_gmt.units = 'K'
varout_nhmt = outfile.createVariable('nhmt', 'f', ('time','iteration_member','ensemble_member'))
varout_nhmt.description = 'nhmt'
varout_nhmt.long_name = 'Northern Hemisphere-mean surface air temperature anomaly'
varout_nhmt.units = 'K'
varout_shmt = outfile.createVariable('shmt', 'f', ('time','iteration_member','ensemble_member'))
varout_shmt.description = 'shmt'
varout_shmt.long_name = 'Southern Hemisphere-mean surface air temperature anomaly'
varout_shmt.units = 'K'
# upload the data to file
time[:] = years
varout_gmt[:] = mc_ens_outarr_gmt
varout_nhmt[:] = mc_ens_outarr_nhmt
varout_shmt[:] = mc_ens_outarr_shmt
# Closing the file
outfile.close()