forked from tuwien-musicir/rp_extract
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrp_extract.py
905 lines (631 loc) · 38.9 KB
/
rp_extract.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
'''
RP_extract: Rhythm Patterns Audio Feature Extractor
@author: 2014-2015 Alexander Schindler, Thomas Lidy
Re-implementation by Alexander Schindler of RP_extract for Matlab
Matlab version originally by Thomas Lidy, based on Musik Analysis Toolbox by Elias Pampalk
( see http://ifs.tuwien.ac.at/mir/downloads.html )
Main function is rp_extract. See function definition and description for more information,
or example usage in main function.
Note: All required functions are provided by the two main scientific libraries numpy and scipy.
'''
import numpy as np
from scipy import stats
from scipy.fftpack import fft
#from scipy.fftpack import rfft # Discrete Fourier transform of a real sequence.
from scipy import interpolate
# suppress numpy warnings (divide by 0 etc.)
np.set_printoptions(suppress=True)
# required for debugging
np.set_printoptions(precision=8,
threshold=10,
suppress=True,
linewidth=200,
edgeitems=10)
# INITIALIZATION: Constants & Mappings
# Bark Scale
bark = [100, 200, 300, 400, 510, 630, 770, 920, 1080, 1270, 1480, 1720, 2000, 2320, 2700, 3150, 3700, 4400, 5300, 6400, 7700, 9500, 12000, 15500]
n_bark_bands = len(bark)
# copy the bark vector (using [:]) and add a 0 in front (to make calculations below easier)
barks = bark[:]
barks.insert(0,0)
# Phone Scale
phon = [3, 20, 40, 60, 80, 100, 101]
# copy the bark vector (using [:]) and add a 0 in front (to make calculations below easier)
phons = phon[:]
phons.insert(0,0)
phons = np.asarray(phons)
# Loudness Curves
eq_loudness = np.array([[55, 40, 32, 24, 19, 14, 10, 6, 4, 3, 2, 2, 0,-2,-5,-4, 0, 5, 10, 14, 25, 35],
[66, 52, 43, 37, 32, 27, 23, 21, 20, 20, 20, 20,19,16,13,13,18, 22, 25, 30, 40, 50],
[76, 64, 57, 51, 47, 43, 41, 41, 40, 40, 40,39.5,38,35,33,33,35, 41, 46, 50, 60, 70],
[89, 79, 74, 70, 66, 63, 61, 60, 60, 60, 60, 59,56,53,52,53,56, 61, 65, 70, 80, 90],
[103, 96, 92, 88, 85, 83, 81, 80, 80, 80, 80, 79,76,72,70,70,75, 79, 83, 87, 95,105],
[118,110,107,105,103,102,101,100,100,100,100, 99,97,94,90,90,95,100,103,105,108,115]])
loudn_freq = np.array([31.62, 50, 70.7, 100, 141.4, 200, 316.2, 500, 707.1, 1000, 1414, 1682, 2000, 2515, 3162, 3976, 5000, 7071, 10000, 11890, 14140, 15500])
# We have the loudness values for the frequencies in loudn_freq
# now we calculate in loudn_bark a matrix of loudness sensation values for the bark bands margins
i = 0
j = 0
loudn_bark = np.zeros((eq_loudness.shape[0], len(bark)))
for bsi in bark:
while j < len(loudn_freq) and bsi > loudn_freq[j]:
j += 1
j -= 1
if np.where(loudn_freq == bsi)[0].size != 0: # loudness value for this frequency already exists
loudn_bark[:,i] = eq_loudness[:,np.where(loudn_freq == bsi)][:,0,0]
else:
w1 = 1 / np.abs(loudn_freq[j] - bsi)
w2 = 1 / np.abs(loudn_freq[j + 1] - bsi)
loudn_bark[:,i] = (eq_loudness[:,j]*w1 + eq_loudness[:,j+1]*w2) / (w1 + w2)
i += 1
# SPECTRAL MASKING Spreading Function
# CONST_spread contains matrix of spectral frequency masking factors
CONST_spread = np.zeros((n_bark_bands,n_bark_bands))
for i in range(n_bark_bands):
CONST_spread[i,:] = 10**((15.81+7.5*((i-np.arange(n_bark_bands))+0.474)-17.5*(1+((i-np.arange(n_bark_bands))+0.474)**2)**0.5)/10)
# UTILITY FUNCTIONS
def nextpow2(num):
'''NextPow2
find the next highest number to the power of 2 to a given number
and return the exponent to 2
(analogously to Matlab's nextpow2() function)
'''
n = 2
i = 1
while n < num:
n *= 2
i += 1
return i
# FFT FUNCTIONS
def periodogram(x,win,Fs=None,nfft=1024):
''' Periodogram
Periodogram power spectral density estimate
Note: this function was written with 1:1 Matlab compatibility in mind.
The number of points, nfft, in the discrete Fourier transform (DFT) is the maximum of 256 or the next power of two greater than the signal length.
:param x: time series data (e.g. audio signal), ideally length matches nfft
:param win: window function to be applied (e.g. Hanning window). in this case win expects already data points of the window to be provided.
:param Fs: sampling frequency (unused)
:param nfft: number of bins for FFT (ideally matches length of x)
:return: Periodogram power spectrum (np.array)
'''
#if Fs == None:
# Fs = 2 * np.pi # commented out because unused
U = np.dot(win.conj().transpose(), win) # compensates for the power of the window.
Xx = fft((x * win),nfft) # verified
P = Xx*np.conjugate(Xx)/U
# Compute the 1-sided or 2-sided PSD [Power/freq] or mean-square [Power].
# Also, compute the corresponding freq vector & freq units.
# Generate the one-sided spectrum [Power] if so wanted
if nfft % 2 != 0:
select = np.arange((nfft+1)/2) # ODD
P = P[select,:] # Take only [0,pi] or [0,pi)
P[1:-1] = P[1:-1] * 2 # Only DC is a unique point and doesn't get doubled
else:
#select = np.arange(nfft/2+1); # EVEN
#P = P[select,:] # Take only [0,pi] or [0,pi) # TODO: why commented out?
P[1:-2] = P[1:-2] * 2
P = P / (2 * np.pi)
return P
def calc_spectrogram(wavsegment,fft_window_size,fft_overlap = 0.5,real_values=True):
''' Calc_Spectrogram
calculate spectrogram using periodogram function (which performs FFT) to convert wave signal data
from time to frequency domain (applying a Hanning window and (by default) 50 % window overlap)
:param wavsegment: audio wave file data for a segment to be analyzed (mono (i.e. 1-dimensional vector) only
:param fft_window_size: windows size to apply FFT to
:param fft_overlap: overlap to apply during FFT analysis in % fraction (e.g. default = 0.5, means 50% overlap)
:param real_values: if True, return real values by taking abs(spectrogram), if False return complex values
:return: spectrogram matrix as numpy array (fft_window_size, n_frames)
'''
# hop_size (increment step in samples, determined by fft_window_size and fft_overlap)
hop_size = int(fft_window_size*(1-fft_overlap))
# this would compute the segment length, but it's pre-defined above ...
# segment_size = fft_window_size + (frames-1) * hop_size
# ... therefore we convert the formula to give the number of frames needed to iterate over the segment:
n_frames = (wavsegment.shape[0] - fft_window_size) / hop_size + 1
# n_frames_old = wavsegment.shape[0] / fft_window_size * 2 - 1 # number of iterations with 50% overlap
# TODO: provide this as parameter for better caching?
han_window = np.hanning(fft_window_size) # verified
# initialize result matrix for spectrogram
spectrogram = np.zeros((fft_window_size, n_frames), dtype=np.complex128)
# start index for frame-wise iteration
ix = 0
for i in range(n_frames): # stepping through the wave segment, building spectrum for each window
spectrogram[:,i] = periodogram(wavsegment[ix:ix+fft_window_size], win=han_window,nfft=fft_window_size)
ix = ix + hop_size
# NOTE: tested scipy periodogram BUT it delivers totally different values AND takes 2x the time of our periodogram function (0.13 sec vs. 0.06 sec)
# from scipy.signal import periodogram # move on top
#f, spec = periodogram(x=wavsegment[idx],fs=samplerate,window='hann',nfft=fft_window_size,scaling='spectrum',return_onesided=True)
if real_values: spectrogram = np.abs(spectrogram)
return (spectrogram)
# FEATURE FUNCTIONS
def calc_spectral_histograms(mat):
result = []
for i in range(24):
result.append(np.histogram(np.clip(mat[i,:],0,10), np.arange(0,11, 2), density=False)[0])
return np.asarray(result)
def calc_statistical_features(matrix):
result = np.zeros((matrix.shape[0],7))
result[:,0] = np.mean(matrix, axis=1)
result[:,1] = np.var(matrix, axis=1, dtype=np.float64) # the values for variance differ between MATLAB and Numpy!
result[:,2] = stats.skew(matrix, axis=1)
result[:,3] = stats.kurtosis(matrix, axis=1, fisher=False) # Matlab calculates Pearson's Kurtosis
result[:,4] = np.median(matrix, axis=1)
result[:,5] = np.min(matrix, axis=1)
result[:,6] = np.max(matrix, axis=1)
result[np.where(np.isnan(result))] = 0
return result
# PSYCHO-ACOUSTIC TRANSFORMS as individual functions
# Transform 2 Mel Scale: NOT USED by rp_extract, but included for testing purposes or for import into other programs
def transform2mel(spectrogram,samplerate,fft_window_size,n_mel_bands = 80,freq_min = 0,freq_max = None):
'''Transform to Mel
convert a spectrogram to a Mel scale spectrogram by grouping original frequency bins
to Mel frequency bands (using Mel filter from Librosa)
Parameters
spectrogram: input spectrogram
samplerate: samplerate of audio signal
fft_window_size: number of time window / frequency bins in the FFT analysis
n_mel_bands: number of desired Mel bands, typically 20, 40, 80 (max. 128 which is default when 'None' is provided)
freq_min: minimum frequency (Mel filters will be applied >= this frequency, but still return n_meld_bands number of bands)
freq_max: cut-off frequency (Mel filters will be applied <= this frequency, but still return n_meld_bands number of bands)
Returns:
mel_spectrogram: Mel spectrogram: np.array of shape(n_mel_bands,frames) maintaining the number of frames in the original spectrogram
'''
import librosa.filters
# Syntax: librosa.filters.mel(sr, n_fft, n_mels=128, fmin=0.0, fmax=None, htk=False)
mel_basis = librosa.filters.mel(samplerate,fft_window_size, n_mels=n_mel_bands,fmin=freq_min,fmax=freq_max)
freq_bin_max = mel_basis.shape[1] # will be fft_window_size / 2 + 1
# IMPLEMENTATION WITH FOR LOOP
# initialize Mel Spectrogram matrix
#n_mel_bands = mel_basis.shape[0] # get the number of bands from result in case 'None' was specified as parameter
#mel_spectrogram = np.empty((n_mel_bands, frames))
#for i in range(frames): # stepping through the wave segment, building spectrum for each window
# mel_spectrogram[:,i] = np.dot(mel_basis,spectrogram[0:freq_bin_max,i])
# IMPLEMENTATION WITH DOT PRODUCT (15% faster)
# multiply the mel filter of each band with the spectogram frame (dot product executes it on all frames)
mel_spectrogram = np.dot(mel_basis,spectrogram[0:freq_bin_max,:])
return (mel_spectrogram)
# Bark Transform: Convert Spectrogram to Bark Scale
# matrix: Spectrogram values as returned from periodogram function
# freq_axis: array of frequency values along the frequency axis
# max_bands: limit number of Bark bands (1...24) (counting from lowest band)
def transform2bark(matrix, freq_axis, max_bands=None):
# barks and n_bark_bands have been initialized globally above
if max_bands == None:
max_band = n_bark_bands
else:
max_band = min(n_bark_bands,max_bands)
matrix_out = np.zeros((max_band,matrix.shape[1]),dtype=matrix.dtype)
for b in range(max_band-1):
matrix_out[b] = np.sum(matrix[((freq_axis >= barks[b]) & (freq_axis < barks[b+1]))], axis=0)
return(matrix_out)
# Spectral Masking (assumes values are arranged in <=24 Bark bands)
def do_spectral_masking(matrix):
n_bands = matrix.shape[0]
# CONST_spread has been initialized globally above
spread = CONST_spread[0:n_bands,0:n_bands] # not sure if column limitation is right here; was originally written for n_bark_bands = 24 only
matrix = np.dot(spread, matrix)
return(matrix)
# Map to Decibel Scale
def transform2db(matrix):
'''Map to Decibel Scale'''
matrix[np.where(matrix < 1)] = 1
matrix = 10 * np.log10(matrix)
return(matrix)
# Transform to Phon (assumes matrix is in dB scale)
def transform2phon(matrix):
# number of bark bands, matrix length in time dim
n_bands = matrix.shape[0]
t = matrix.shape[1]
# DB-TO-PHON BARK-SCALE-LIMIT TABLE
# introducing 1 level more with level(1) being infinite
# to avoid (levels - 1) producing errors like division by 0
#%%table_dim = size(CONST_loudn_bark,2);
table_dim = n_bands; # OK
cbv = np.concatenate((np.tile(np.inf,(table_dim,1)), loudn_bark[:,0:n_bands].transpose()),1) # OK
# init lowest level = 2
levels = np.tile(2,(n_bands,t)) # OK
for lev in range(1,6): # OK
db_thislev = np.tile(np.asarray([cbv[:,lev]]).transpose(),(1,t))
levels[np.where(matrix > db_thislev)] = lev + 2
# the matrix 'levels' stores the correct Phon level for each data point
cbv_ind_hi = np.ravel_multi_index(dims=(table_dim,7), multi_index=np.array([np.tile(np.array([range(0,table_dim)]).transpose(),(1,t)), levels-1]), order='F')
cbv_ind_lo = np.ravel_multi_index(dims=(table_dim,7), multi_index=np.array([np.tile(np.array([range(0,table_dim)]).transpose(),(1,t)), levels-2]), order='F')
# interpolation factor % OPT: pre-calc diff
ifac = (matrix[:,0:t] - cbv.transpose().ravel()[cbv_ind_lo]) / (cbv.transpose().ravel()[cbv_ind_hi] - cbv.transpose().ravel()[cbv_ind_lo])
ifac[np.where(levels==2)] = 1 # keeps the upper phon value;
ifac[np.where(levels==8)] = 1 # keeps the upper phon value;
# phons has been initialized globally above
matrix[:,0:t] = phons.transpose().ravel()[levels - 2] + (ifac * (phons.transpose().ravel()[levels - 1] - phons.transpose().ravel()[levels - 2])) # OPT: pre-calc diff
return(matrix)
# Transform to Sone scale (assumes matrix is in Phon scale)
def transform2sone(matrix):
idx = np.where(matrix >= 40)
not_idx = np.where(matrix < 40)
matrix[idx] = 2**((matrix[idx]-40)/10) #
matrix[not_idx] = (matrix[not_idx]/40)**2.642 # max => 438.53
return(matrix)
# MAIN Rhythm Pattern Extraction Function
def rp_extract( wavedata, # pcm (wav) signal data normalized to (-1,1)
samplerate, # signal sampling rate
# which features to extract
extract_rp = False, # extract Rhythm Patterns features
extract_ssd = False, # extract Statistical Spectrum Descriptor
extract_sh = False, # extract Statistical Histograms
extract_tssd = False, # extract temporal Statistical Spectrum Descriptor
extract_rh = False, # extract Rhythm Histogram features
extract_rh2 = False, # extract Rhythm Histogram features including Fluctuation Strength Weighting
extract_trh = False, # extract temporal Rhythm Histogram features
extract_mvd = False, # extract modulation variance descriptor
# processing options
skip_leadin_fadeout = 1, # >=0 how many sample windows to skip at the beginning and the end
step_width = 1, # >=1 each step_width'th sample window is analyzed
n_bark_bands = 24, # 2..24 number of desired Bark bands (from low frequencies to high) (e.g. 15 or 20 or 24 for 11, 22 and 44 kHz audio respectively) (1 delivers undefined output)
mod_ampl_limit = 60, # 2..257 number of modulation frequencies on x-axis
# enable/disable parts of feature extraction
transform_bark = True, # [S2] transform to Bark scale
spectral_masking = True, # [S3] compute Spectral Masking
transform_db = True, # [S4] transfrom to dB: advisable only to turn off when [S5] and [S6] are turned off too
transform_phon = True, # [S5] transform to Phon: if disabled, Sone_transform will be disabled too
transform_sone = True, # [S6] transform to Sone scale (only applies if transform_phon = True)
fluctuation_strength_weighting = True, # [R2] apply Fluctuation Strength weighting curve
#blurring = True # [R3] Gradient+Gauss filter # TODO: not yet implemented
return_segment_features = False, # this will return features per each analyzed segment instead of aggregated ones
verbose = True # print messages whats going on
):
'''Rhythm Pattern Feature Extraction
performs segment-wise audio feature extraction from provided audio wave (PCM) data
and extracts the following features:
Rhythm Pattern
Statistical Spectrum Descriptor
Statistical Histogram
temporal Statistical Spectrum Descriptor
Rhythm Histogram
temporal Rhythm Histogram features
Modulation Variance Descriptor
Examples:
>>> from audiofile_read import *
>>> samplerate, samplewidth, wavedata = audiofile_read("music/BoxCat_Games_-_10_-_Epic_Song.mp3") #doctest: +ELLIPSIS
Decoded mp3 with: mpg123 -q -w /....wav music/BoxCat_Games_-_10_-_Epic_Song.mp3
>>> feat = rp_extract(wavedata, samplerate, extract_rp=True, extract_ssd=True, extract_rh=True)
Analyzing 7 segments
>>> for k in feat.keys():
... print k.upper() + ":", feat[k].shape[0], "dimensions"
SSD: 168 dimensions
RH: 60 dimensions
RP: 1440 dimensions
>>> print feat["rp"]
[ 0.01599218 0.01979605 0.01564305 0.01674175 0.00959912 0.00931604 0.00937831 0.00709122 0.00929631 0.00754473 ..., 0.02998088 0.03602739 0.03633861 0.03664331 0.02589753 0.02110256
0.01457744 0.01221825 0.0073788 0.00164668]
>>> print feat["rh"]
[ 7.11614842 12.58303013 6.96717295 5.24244146 6.49677561 4.21249659 12.43844045 4.19672357 5.30714983 6.1674115 ..., 1.55870044 2.69988854 2.75075831 3.67269877 13.0351257
11.7871738 3.76106713 2.45225195 2.20457928 2.06494926]
>>> print feat["ssd"]
[ 3.7783279 5.84444695 5.58439197 4.87849697 4.14983056 4.09638223 4.04971225 3.96152261 3.65551062 3.2857232 ..., 14.45953191 14.6088727 14.03351539 12.84783095 10.81735946
9.04121124 7.13804008 5.6633501 3.09678286 0.52076428]
'''
# PARAMETER INITIALIZATION
# non-exhibited parameter
include_DC = False
# segment_size should always be ~6 sec, fft_window_size should always be ~ 23ms
if (samplerate == 11025):
segment_size = 2**16
fft_window_size = 256
elif (samplerate == 22050):
segment_size = 2**17
fft_window_size = 512
elif (samplerate == 44100):
segment_size = 2**18
fft_window_size = 1024
else:
# throw error not supported
raise ValueError('A sample rate of' + samplerate + "is not supported (only 11, 22 and 44 kHz).")
# calculate frequency values on y-axis (for Bark scale calculation):
# freq_axis = float(samplerate)/fft_window_size * np.arange(0,(fft_window_size/2) + 1)
# linear space from 0 to samplerate/2 in (fft_window_size/2+1) steps
freq_axis = np.linspace(0, float(samplerate)/2, int(fft_window_size//2) + 1, endpoint=True)
# CONVERT STEREO TO MONO: Average the channels
if wavedata.ndim > 1: # if we have more than 1 dimension
if wavedata.shape[1] == 1: # check if 2nd dimension is just 1
wavedata = wavedata[:,0] # then we take first and only channel
else:
wavedata = np.mean(wavedata, 1) # otherwise we average the signals over the channels
# SEGMENT INITIALIZATION
# find positions of wave segments
skip_seg = skip_leadin_fadeout
seg_pos = np.array([1, segment_size]) # array with 2 entries: start and end position of selected segment
seg_pos_list = [] # list to store all the individual segment positions (only when return_segment_features == True)
# if file is too small, don't skip leadin/fadeout and set step_width to 1
if ((skip_leadin_fadeout > 0) or (step_width > 1)):
duration = wavedata.shape[0]/samplerate
if (duration < 45):
step_width = 1
skip_seg = 0
# TODO: do this as a warning?
if verbose: print "Duration < 45 seconds: setting step_width to 1 and skip_leadin_fadeout to 0."
else:
# advance by number of skip_seg segments (i.e. skip lead_in)
seg_pos = seg_pos + segment_size * skip_seg
# calculate number of segments
n_segments = int(np.floor( (np.floor( (wavedata.shape[0] - (skip_seg*2*segment_size)) / segment_size ) - 1 ) / step_width ) + 1)
if verbose: print "Analyzing", n_segments, "segments"
if n_segments == 0:
raise ValueError("Not enough data to analyze! Minumum sample length needs to be " +
str(segment_size) + " (5.94 seconds) but it is " + str(wavedata.shape[0]) +
" (" + str(round(wavedata.shape[0] * 1.0 / samplerate,2)) + " seconds)")
# initialize output
features = {}
ssd_list = []
sh_list = []
rh_list = []
rh2_list = []
rp_list = []
mvd_list = []
hearing_threshold_factor = 0.0875 * (2**15)
# SEGMENT ITERATION
for seg_id in range(n_segments):
# keep track of segment position
if return_segment_features:
seg_pos_list.append(seg_pos)
# EXTRACT WAVE SEGMENT that will be processed
# data is assumed to be mono waveform
wavsegment = wavedata[seg_pos[0]-1:seg_pos[1]] # verified
# v210715
# Python : [-0.0269165 -0.02128601 -0.01864624 -0.01893616 -0.02166748 -0.02694702 -0.03457642 -0.04333496 -0.05166626 -0.05891418]
# Matlab : [-0,0269165 -0,02125549 -0,01861572 -0,01893616 -0,02165222 -0,02694702 -0,03456115 -0,04331970 -0,05166626 -0,05891418]
# adjust hearing threshold # TODO: move after stereo-mono conversion above?
wavsegment = wavsegment * hearing_threshold_factor
# v210715
# Python : [ -77.175 -61.03125 -53.4625 -54.29375 -62.125 -77.2625 -99.1375 -124.25 -148.1375 -168.91875]
# Matlab : [ -77,175 -60,94375 -53,3750 -54,29375 -62,081 -77,2625 -99,0938 -124,21 -148,1375 -168,91875]
matrix = calc_spectrogram(wavsegment,fft_window_size)
# v210715
#Python: 0.01372537 0.51454915 72.96077581 84.86663379 2.09940049 3.29631279 97373.2756834 23228.2065494 2678.44451741 30467.235416
# : 84.50635406 58.32826049 1263.82538188 234.11858349 85.48176796 97.26094525 214067.91208223 3570917.53366476 2303291.96676741 1681002.94519665
# : 171.47168402 1498.04129116 3746.45491915 153.01444364 37.20801758 177.74229702 238810.1975412 3064388.50572536 5501187.79635479 4172009.81345923
#Matlab: 0,01528259 0,49653179 73,32978523 85,38774541 2,00416767 3,36618763 97416,24267209 23239,84650814 2677,01521862 30460,9231041364
# : 84,73805309 57,84524803 1263,40594029 235,62185973 85,13826606 97,61122652 214078,02415144 3571346,74831746 2303286,74666381 1680967,41922679
# : 170,15377915 1500,98052242 3744,98456435 154,14108817 36,69362260 177,48982263 238812,02171250 3064642,99278220 5501230,26588318 4172058,72803277
#
# PSYCHO-ACOUSTIC TRANSFORMS
# Map to Bark Scale
if transform_bark:
matrix = transform2bark(matrix,freq_axis,n_bark_bands)
# v210715
# Python: 255.991763 1556.884100 5083.2410768 471.9996609 124.789186 278.299555 550251.385306 6658534.245939 7807158.207639 5883479.99407189
# : 77128.354925 10446.109041 22613.8525735 13266.2502432 2593.395039 1367.697057 675114.554043 23401741.536499 6300109.471193 8039710.71759598
# : 127165.795400 91270.354107 15240.3501050 16291.2234730 1413.851495 2166.723800 868138.817452 20682384.237884 8971171.605009 5919089.97818692
# Matlab: 254,907114 1559,322302 5081,720289 475,1506933 123,836056 278,46723 550306,288536 6659229,587607 7807194,027765 5883487,07036370
# : 77118,196343 10447,961479 22605,559124 13266,4432995 2591,064037 1368,48462 675116,996782 23400723,570438 6300124,132022 8039688,83884099
# : 127172,560642 91251,040768 15246,639683 16286,4542687 1414,053166 2166,42874 868063,055613 20681863,052695 8971108,607811 5919136,16752791
# Spectral Masking
if spectral_masking:
matrix = do_spectral_masking(matrix)
# v210715
# Python: 12978.051641 3416.109125 8769.913963 2648.888265 547.12360 503.50224 660888.17361 10480839.33617 8840234.405272 7193404.23970964
# : 100713.471006 27602.656332 27169.741240 16288.350176 2887.60281 1842.05959 1021358.42618 29229962.41626 10653981.441005 11182818.62910279
# : 426733.607945 262537.326945 43522.106075 41091.381283 4254.39289 4617.45877 1315036.85377 31353824.35688 12417010.121754 9673923.23590653
# Matlab: 12975,335615 3418,81282 8767,062187 2652,061105 545,79379 503,79683 660943,32199 10481368,76411 8840272,477464 7193407,85259461
# : 100704,175421 27602,34142 27161,901160 16288,924458 2884,94883 1842,86020 1021368,99046 29229118,99738 10653999,341989 11182806,7524195
# : 426751,992198 262523,89306 43524,970883 41085,415594 4253,42029 4617,35691 1314966,73269 31353021,99155 12416968,806879 9673951,88376021
# Map to Decibel Scale
if transform_db:
matrix = transform2db(matrix)
# v210715
# Python: 41.13209498 35.33531736 39.42995333 34.23063639 27.38085455 27.02001413 58.2012798 70.20396064 69.46463781 68.56934467
# : 50.03087564 44.40950878 44.34085502 42.11877097 34.60537456 32.65303677 60.09178176 74.65828257 70.27511936 70.48551281
# : 56.30156848 54.19191059 46.38709903 46.1375074 36.28837595 36.64403027 61.18937924 74.96290521 70.94017035 69.85602637
# Matlab: 41,13118599 35,33875324 39,42854087 34,23583526 27,37028596 27,02255437 58,20164218 70,20418000 69,46465651 68,56934684
# : 50,03047477 44,40945923 44,33960164 42,11892409 34,60138115 32,65492392 60,09182668 74,65815725 70,27512665 70,48550820
# : 56,30175557 54,19168835 46,38738489 46,13687684 36,28738298 36,64393446 61,18914765 74,96279407 70,94015590 69,85603922
# Transform Phon
if transform_phon:
matrix = transform2phon(matrix)
# v210715
# Python: 25.90299283 17.82310731 23.4713619 16.37852452 7.42111749 6.94924924 47.58029453 60.22662293 59.43646085 58.49404702
# : 47.03087564 41.40950878 41.34085502 38.89846372 29.5067182 27.06629597 57.09178176 71.65828257 67.27511936 67.48551281
# : 55.02273887 52.91308099 45.10826943 44.8586778 34.3678058 34.769195 59.91054964 73.68407561 69.66134075 68.57719676
# Matlab: 25,90169428 17,82760039 23,46934410 16,38532303 7,40729702 6,95257110 47,58067598 60,22686667 59,43648053 58,49404931
# : 47,03047477 41,40945923 41,33960164 38,89865511 29,50172644 27,06865491 57,09182668 71,65815725 67,27512665 67,48550820
# : 55,02292596 52,91285875 45,10855528 44,85804723 34,36668514 34,76908687 59,91031805 73,68396446 69,66132629 68,57720962
# Transform Sone
if transform_sone:
matrix = transform2sone(matrix)
# v210715
# Python: 0.31726931 0.11815598 0.24452297 0.09450863 0.01167179 0.009812 1.6911791 4.06332931 3.84676603 3.60351463
# : 1.62798518 1.10263162 1.09739697 0.92887876 0.44759842 0.35631529 3.26974511 8.97447943 6.62312431 6.72041945
# : 2.83288863 2.44749871 1.42486669 1.40042797 0.669685 0.69054778 3.97527582 10.327417 7.81439442 7.24868691
# Matlab: 0,31722728 0,11823469 0,24446743 0,09461230 0,01161444 0,00982439 1,69122381 4,06339796 3,84677128 3,60351520
# : 1,62793994 1,10262783 1,09730163 0,92889083 0,44739839 0,35639734 3,26975529 8,97440147 6,62312765 6,72041730
# : 2,83292537 2,44746100 1,42489491 1,40036676 0,66962731 0,69054210 3,97521200 10,32733744 7,81438659 7,24869337
# FEATURES: now we got a Sonogram and extract statistical features
# SSD: Statistical Spectrum Descriptors
if (extract_ssd or extract_tssd):
ssd = calc_statistical_features(matrix)
ssd_list.append(ssd.flatten(1))
# v210715
# Python: 2.97307486 5.10356599 0.65305978 2.35489911 2.439558 0.009812 8.1447095
# : 4.72262845 7.30899976 0.17862996 2.10446264 4.58595337 0.25538117 12.83339251
# : 4.77858109 5.52646859 0.23911764 2.9056742 4.96338019 0.589568 13.6683906
# : 4.43503421 3.69422906 0.41473155 3.06743402 4.33220988 0.88354694 10.89393754
# : 3.77216546 2.3993334 0.84001713 4.35548197 3.65140589 1.01199696 11.07806891
# : 3.60563073 2.09907968 1.49906811 7.07183968 3.35596471 1.00619842 11.2872743
# : 3.56816128 2.20237398 1.69790808 7.57870223 3.33806767 1.10826324 10.84965392
# : 3.43734647 2.38648202 1.59655791 6.86704341 3.23361995 1.10198021 11.89470587
# : 3.18466303 2.39479532 1.99223131 8.83987184 2.8819031 0.93982524 11.28737448
# : 2.90996406 1.85412568 1.97247446 8.36738395 2.68063918 0.81760102 9.64247378
# Matlab: 2,97309758 5,11366933 0,65306558 2,35489605 2,43956735 0,00982439 8,14473582
# : 4,72264163 7,32338449 0,17863061 2,10444843 4,58593777 0,25568703 12,83335168
# : 4,77859306 5,53731457 0,23911126 2,90567055 4,96338616 0,58959588 13,66839858
# : 4,43505068 3,70148292 0,41473410 3,06742263 4,33222037 0,88357883 10,89397920
# : 3,77217541 2,40405654 0,84000183 4,35540491 3,65136495 1,01191651 11,07802201
# : 3,60563459 2,10319516 1,49905911 7,07181623 3,35609824 1,00628652 11,28728291
# : 3,56820841 2,20675908 1,69792784 7,57880557 3,33819690 1,10830805 10,84975850
# : 3,43736757 2,39117736 1,59656951 6,86710630 3,23366165 1,10199096 11,89486723
# : 3,18467212 2,39951286 1,99223621 8,83991021 2,88200015 0,93978494 11,28733449
# : 2,90997546 1,85776617 1,97246361 8,36742039 2,68074853 0,81790606 9,64262886
# SH: Statistical Spectrum Histograms
if (extract_sh):
sh = calc_spectral_histograms(matrix)
sh_list.append(sh)
# values verified
# RP: RHYTHM PATTERNS
feature_part_xaxis1 = range(0,mod_ampl_limit) # take first (opts.mod_ampl_limit) values of fft result including DC component
feature_part_xaxis2 = range(1,mod_ampl_limit+1) # leave DC component and take next (opts.mod_ampl_limit) values of fft result
if (include_DC):
feature_part_xaxis_rp = feature_part_xaxis1
else:
feature_part_xaxis_rp = feature_part_xaxis2
# 2nd FFT
fft_size = 2**(nextpow2(matrix.shape[1]))
if (mod_ampl_limit >= fft_size):
raise(ValueError("mod_ampl_limit option must be smaller than FFT window size (" + str(fft_size) + ")."))
# NOTE: in fact only half of it (256) makes sense due to the symmetry of the FFT result
rhythm_patterns = np.zeros((matrix.shape[0], fft_size), dtype=np.complex128)
#rhythm_patterns = np.zeros((matrix.shape[0], fft_size), dtype=np.float64)
# real_matrix = abs(matrix)
for b in range(0,matrix.shape[0]):
rhythm_patterns[b,:] = fft(matrix[b,:], fft_size)
# tried this instead, but ...
#rhythm_patterns[b,:] = fft(real_matrix[b,:], fft_size) # ... no performance improvement
#rhythm_patterns[b,:] = rfft(real_matrix[b,:], fft_size) # ... different output values
rhythm_patterns = rhythm_patterns / 256 # why 256?
# convert from complex128 to float64 (real)
rp = np.abs(rhythm_patterns[:,feature_part_xaxis_rp]) # verified
# MVD: Modulation Variance Descriptors
if extract_mvd:
mvd = calc_statistical_features(rp.transpose()) # verified
mvd_list.append(mvd.flatten(1))
# RH: Rhythm Histograms - OPTION 1: before fluctuation_strength_weighting (as in Matlab)
if extract_rh:
rh = np.sum(np.abs(rhythm_patterns[:,feature_part_xaxis2]),axis=0) #without DC component # verified
rh_list.append(rh.flatten(1))
# final steps for RP:
# Fluctuation Strength weighting curve
if fluctuation_strength_weighting:
# modulation frequency x-axis (after 2nd FFT)
# mod_freq_res = resolution of modulation frequency axis (0.17 Hz)
mod_freq_res = 1 / (float(segment_size) / samplerate)
# modulation frequencies along x-axis from index 0 to 256)
mod_freq_axis = mod_freq_res * np.array(feature_part_xaxis_rp)
# fluctuation strength curve
fluct_curve = 1 / (mod_freq_axis/4 + 4/mod_freq_axis)
for b in range(rp.shape[0]):
rp[b,:] = rp[b,:] * fluct_curve #[feature_part_xaxis_rp]
#values verified
# RH: Rhythm Histograms - OPTION 2 (after Fluctuation weighting)
if extract_rh2:
rh2 = np.sum(rp,axis=0) #TODO: adapt to do always without DC component
rh2_list.append(rh2.flatten(1))
# Gradient+Gauss filter
#if extract_rp:
# TODO Gradient+Gauss filter
#for i in range(1,rp.shape[1]):
# rp[:,i-1] = np.abs(rp[:,i] - rp[:,i-1]);
#
#rp = blur1 * rp * blur2;
rp_list.append(rp.flatten(order='F'))
seg_pos = seg_pos + segment_size * step_width
if extract_rp:
if return_segment_features:
features["rp"] = np.array(rp_list)
else:
features["rp"] = np.median(np.asarray(rp_list), axis=0)
if extract_ssd:
if return_segment_features:
features["ssd"] = np.array(ssd_list)
else:
features["ssd"] = np.mean(np.asarray(ssd_list), axis=0)
if extract_sh:
if len(sh_list) > 1:
sh_list = np.asarray(sh_list) / 511.0
sh = []
#print sh_list.shape
for i in range(sh_list.shape[1]):
t = sh_list[:,i,:]
x = np.arange(0,t.shape[1])
y = np.arange(0,t.shape[0])
new_x = np.linspace(0,t.shape[0],10)
#print t.shape
newKernel = interpolate.interp2d(x,y,t,kind='linear')
new_t = newKernel(x,new_x)
sh.append(new_t)
if return_segment_features:
features["sh"] = np.array(sh) # TODO check Alex: sh or sh_list here?
else:
features["sh"] = np.asarray(sh).flatten('C')
else:
features["sh"] = []
if extract_rh:
if return_segment_features:
features["rh"] = np.array(rh_list)
else:
features["rh"] = np.median(np.asarray(rh_list), axis=0)
if extract_mvd:
if return_segment_features:
features["mvd"] = np.array(mvd_list)
else:
features["mvd"] = np.mean(np.asarray(mvd_list), axis=0)
# NOTE: no return_segment_features for temporal features as they measure variation of features over time
if extract_tssd:
features["tssd"] = calc_statistical_features(np.asarray(ssd_list).transpose()).flatten(1)
if extract_trh:
features["trh"] = calc_statistical_features(np.asarray(rh_list).transpose()).flatten(1)
if return_segment_features:
# also include the segment positions in the result
features["segpos"] = np.array(seg_pos_list)
features["timepos"] = features["segpos"] / (samplerate * 1.0)
return features
# function to self test rp_extract if working properly
def self_test():
import doctest
#doctest.testmod()
doctest.run_docstring_examples(rp_extract, globals())
if __name__ == '__main__':
# to run self test:
#self_test()
#exit()
# (no output means that everything went fine)
# import our library for reading wav and mp3 files
from audiofile_read import *
audiofile = "music/BoxCat_Games_-_10_-_Epic_Song.mp3"
# Read audio file and extract features
try:
samplerate, samplewidth, wavedata = audiofile_read(audiofile)
np.set_printoptions(suppress=True)
bark_bands = 24 # choose the number of Bark bands (2..24)
mod_ampl_limit = 60 # number modulation frequencies on x-axis
feat = rp_extract(wavedata,
samplerate,
extract_rp=True,
extract_ssd=True,
extract_tssd=False,
extract_rh=True,
n_bark_bands=bark_bands,
spectral_masking=True,
transform_db=True,
transform_phon=True,
transform_sone=True,
fluctuation_strength_weighting=True,
skip_leadin_fadeout=1,
step_width=1,
mod_ampl_limit=mod_ampl_limit)
# feat is a dict containing arrays for different feature sets
print "Successfully extracted features:" , feat.keys()
except ValueError, e:
print e
exit()
print "Rhythm Histogram feature vector:"
print feat["rh"]
# EXAMPLE on how to plot the features
do_plots = False
if do_plots:
from rp_plot import *
plotrp(feat["rp"],rows=bark_bands,cols=mod_ampl_limit)
plotrh(feat["rh"])
plotssd(feat["ssd"],rows=bark_bands)
# EXAMPLE on how to store RP features in CSV file
# import pandas as pd
# filename = "features.rp.csv"
# rp = pd.DataFrame(feat["rp"].reshape([1,feat["rp"].shape[0]]))
# rp.to_csv(filename)
# print rp.to_json()