-
-
Notifications
You must be signed in to change notification settings - Fork 168
/
Copy pathnorm.go
254 lines (224 loc) · 7.46 KB
/
norm.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
package stats
import (
"math"
"math/rand"
"strings"
"time"
)
// NormPpfRvs generates random variates using the Point Percentile Function.
// For more information please visit: https://demonstrations.wolfram.com/TheMethodOfInverseTransforms/
func NormPpfRvs(loc float64, scale float64, size int) []float64 {
rand.Seed(time.Now().UnixNano())
var toReturn []float64
for i := 0; i < size; i++ {
toReturn = append(toReturn, NormPpf(rand.Float64(), loc, scale))
}
return toReturn
}
// NormBoxMullerRvs generates random variates using the Box–Muller transform.
// For more information please visit: http://mathworld.wolfram.com/Box-MullerTransformation.html
func NormBoxMullerRvs(loc float64, scale float64, size int) []float64 {
rand.Seed(time.Now().UnixNano())
var toReturn []float64
for i := 0; i < int(float64(size/2)+float64(size%2)); i++ {
// u1 and u2 are uniformly distributed random numbers between 0 and 1.
u1 := rand.Float64()
u2 := rand.Float64()
// x1 and x2 are normally distributed random numbers.
x1 := loc + (scale * (math.Sqrt(-2*math.Log(u1)) * math.Cos(2*math.Pi*u2)))
toReturn = append(toReturn, x1)
if (i+1)*2 <= size {
x2 := loc + (scale * (math.Sqrt(-2*math.Log(u1)) * math.Sin(2*math.Pi*u2)))
toReturn = append(toReturn, x2)
}
}
return toReturn
}
// NormPdf is the probability density function.
func NormPdf(x float64, loc float64, scale float64) float64 {
return (math.Pow(math.E, -(math.Pow(x-loc, 2))/(2*math.Pow(scale, 2)))) / (scale * math.Sqrt(2*math.Pi))
}
// NormLogPdf is the log of the probability density function.
func NormLogPdf(x float64, loc float64, scale float64) float64 {
return math.Log((math.Pow(math.E, -(math.Pow(x-loc, 2))/(2*math.Pow(scale, 2)))) / (scale * math.Sqrt(2*math.Pi)))
}
// NormCdf is the cumulative distribution function.
func NormCdf(x float64, loc float64, scale float64) float64 {
return 0.5 * (1 + math.Erf((x-loc)/(scale*math.Sqrt(2))))
}
// NormLogCdf is the log of the cumulative distribution function.
func NormLogCdf(x float64, loc float64, scale float64) float64 {
return math.Log(0.5 * (1 + math.Erf((x-loc)/(scale*math.Sqrt(2)))))
}
// NormSf is the survival function (also defined as 1 - cdf, but sf is sometimes more accurate).
func NormSf(x float64, loc float64, scale float64) float64 {
return 1 - 0.5*(1+math.Erf((x-loc)/(scale*math.Sqrt(2))))
}
// NormLogSf is the log of the survival function.
func NormLogSf(x float64, loc float64, scale float64) float64 {
return math.Log(1 - 0.5*(1+math.Erf((x-loc)/(scale*math.Sqrt(2)))))
}
// NormPpf is the point percentile function.
// This is based on Peter John Acklam's inverse normal CDF.
// algorithm: http://home.online.no/~pjacklam/notes/invnorm/ (no longer visible).
// For more information please visit: https://stackedboxes.org/2017/05/01/acklams-normal-quantile-function/
func NormPpf(p float64, loc float64, scale float64) (x float64) {
const (
a1 = -3.969683028665376e+01
a2 = 2.209460984245205e+02
a3 = -2.759285104469687e+02
a4 = 1.383577518672690e+02
a5 = -3.066479806614716e+01
a6 = 2.506628277459239e+00
b1 = -5.447609879822406e+01
b2 = 1.615858368580409e+02
b3 = -1.556989798598866e+02
b4 = 6.680131188771972e+01
b5 = -1.328068155288572e+01
c1 = -7.784894002430293e-03
c2 = -3.223964580411365e-01
c3 = -2.400758277161838e+00
c4 = -2.549732539343734e+00
c5 = 4.374664141464968e+00
c6 = 2.938163982698783e+00
d1 = 7.784695709041462e-03
d2 = 3.224671290700398e-01
d3 = 2.445134137142996e+00
d4 = 3.754408661907416e+00
plow = 0.02425
phigh = 1 - plow
)
if p < 0 || p > 1 {
return math.NaN()
} else if p == 0 {
return -math.Inf(0)
} else if p == 1 {
return math.Inf(0)
}
if p < plow {
q := math.Sqrt(-2 * math.Log(p))
x = (((((c1*q+c2)*q+c3)*q+c4)*q+c5)*q + c6) /
((((d1*q+d2)*q+d3)*q+d4)*q + 1)
} else if phigh < p {
q := math.Sqrt(-2 * math.Log(1-p))
x = -(((((c1*q+c2)*q+c3)*q+c4)*q+c5)*q + c6) /
((((d1*q+d2)*q+d3)*q+d4)*q + 1)
} else {
q := p - 0.5
r := q * q
x = (((((a1*r+a2)*r+a3)*r+a4)*r+a5)*r + a6) * q /
(((((b1*r+b2)*r+b3)*r+b4)*r+b5)*r + 1)
}
e := 0.5*math.Erfc(-x/math.Sqrt2) - p
u := e * math.Sqrt(2*math.Pi) * math.Exp(x*x/2)
x = x - u/(1+x*u/2)
return x*scale + loc
}
// NormIsf is the inverse survival function (inverse of sf).
func NormIsf(p float64, loc float64, scale float64) (x float64) {
if -NormPpf(p, loc, scale) == 0 {
return 0
}
return -NormPpf(p, loc, scale)
}
// NormMoment approximates the non-central (raw) moment of order n.
// For more information please visit: https://math.stackexchange.com/questions/1945448/methods-for-finding-raw-moments-of-the-normal-distribution
func NormMoment(n int, loc float64, scale float64) float64 {
toReturn := 0.0
for i := 0; i < n+1; i++ {
if (n-i)%2 == 0 {
toReturn += float64(Ncr(n, i)) * (math.Pow(loc, float64(i))) * (math.Pow(scale, float64(n-i))) *
(float64(factorial(n-i)) / ((math.Pow(2.0, float64((n-i)/2))) *
float64(factorial((n-i)/2))))
}
}
return toReturn
}
// NormStats returns the mean, variance, skew, and/or kurtosis.
// Mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’).
// Takes string containing any of 'mvsk'.
// Returns array of m v s k in that order.
func NormStats(loc float64, scale float64, moments string) []float64 {
var toReturn []float64
if strings.ContainsAny(moments, "m") {
toReturn = append(toReturn, loc)
}
if strings.ContainsAny(moments, "v") {
toReturn = append(toReturn, math.Pow(scale, 2))
}
if strings.ContainsAny(moments, "s") {
toReturn = append(toReturn, 0.0)
}
if strings.ContainsAny(moments, "k") {
toReturn = append(toReturn, 0.0)
}
return toReturn
}
// NormEntropy is the differential entropy of the RV.
func NormEntropy(loc float64, scale float64) float64 {
return math.Log(scale * math.Sqrt(2*math.Pi*math.E))
}
// NormFit returns the maximum likelihood estimators for the Normal Distribution.
// Takes array of float64 values.
// Returns array of Mean followed by Standard Deviation.
func NormFit(data []float64) [2]float64 {
sum := 0.00
for i := 0; i < len(data); i++ {
sum += data[i]
}
mean := sum / float64(len(data))
stdNumerator := 0.00
for i := 0; i < len(data); i++ {
stdNumerator += math.Pow(data[i]-mean, 2)
}
return [2]float64{mean, math.Sqrt((stdNumerator) / (float64(len(data))))}
}
// NormMedian is the median of the distribution.
func NormMedian(loc float64, scale float64) float64 {
return loc
}
// NormMean is the mean/expected value of the distribution.
func NormMean(loc float64, scale float64) float64 {
return loc
}
// NormVar is the variance of the distribution.
func NormVar(loc float64, scale float64) float64 {
return math.Pow(scale, 2)
}
// NormStd is the standard deviation of the distribution.
func NormStd(loc float64, scale float64) float64 {
return scale
}
// NormInterval finds endpoints of the range that contains alpha percent of the distribution.
func NormInterval(alpha float64, loc float64, scale float64) [2]float64 {
q1 := (1.0 - alpha) / 2
q2 := (1.0 + alpha) / 2
a := NormPpf(q1, loc, scale)
b := NormPpf(q2, loc, scale)
return [2]float64{a, b}
}
// factorial is the naive factorial algorithm.
func factorial(x int) int {
if x == 0 {
return 1
}
return x * factorial(x-1)
}
// Ncr is an N choose R algorithm.
// Aaron Cannon's algorithm.
func Ncr(n, r int) int {
if n <= 1 || r == 0 || n == r {
return 1
}
if newR := n - r; newR < r {
r = newR
}
if r == 1 {
return n
}
ret := int(n - r + 1)
for i, j := ret+1, int(2); j <= r; i, j = i+1, j+1 {
ret = ret * i / j
}
return ret
}