-
Notifications
You must be signed in to change notification settings - Fork 111
/
Copy pathTaskForSQuADQuestionAnswering.py
280 lines (255 loc) · 14.6 KB
/
TaskForSQuADQuestionAnswering.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
import collections
import sys
sys.path.append('../')
from model import BertConfig
from model import BertForQuestionAnswering
from utils import LoadSQuADQuestionAnsweringDataset
from utils import logger_init
from transformers import BertTokenizer
from transformers import get_scheduler
import logging
import torch
import os
import time
from tqdm import tqdm
class ModelConfig:
def __init__(self):
self.project_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
self.dataset_dir = os.path.join(self.project_dir, 'data', 'SQuAD')
self.pretrained_model_dir = os.path.join(self.project_dir, "bert_base_uncased_english")
self.vocab_path = os.path.join(self.pretrained_model_dir, 'vocab.txt')
self.device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
self.train_file_path = os.path.join(self.dataset_dir, 'train-v1.1.json')
self.test_file_path = os.path.join(self.dataset_dir, 'dev-v1.1.json')
self.model_save_dir = os.path.join(self.project_dir, 'cache')
self.logs_save_dir = os.path.join(self.project_dir, 'logs')
self.model_save_path = os.path.join(self.model_save_dir, 'model.pt')
self.n_best_size = 10 # 对预测出的答案近后处理时,选取的候选答案数量
self.max_answer_len = 30 # 在对候选进行筛选时,对答案最大长度的限制
self.is_sample_shuffle = True # 是否对训练集进行打乱
self.use_torch_multi_head = False # 是否使用PyTorch中的multihead实现
self.batch_size = 12
self.max_sen_len = 384 # 最大句子长度,即 [cls] + question ids + [sep] + context ids + [sep] 的长度
self.max_query_len = 64 # 表示问题的最大长度,超过长度截取
self.learning_rate = 3.5e-5
self.doc_stride = 128 # 滑动窗口一次滑动的长度
self.epochs = 2
self.model_val_per_epoch = 1
logger_init(log_file_name='qa', log_level=logging.DEBUG,
log_dir=self.logs_save_dir)
if not os.path.exists(self.model_save_dir):
os.makedirs(self.model_save_dir)
# 把原始bert中的配置参数也导入进来
bert_config_path = os.path.join(self.pretrained_model_dir, "config.json")
bert_config = BertConfig.from_json_file(bert_config_path)
for key, value in bert_config.__dict__.items():
self.__dict__[key] = value
# 将当前配置打印到日志文件中
logging.info(" ### 将当前配置打印到日志文件中 ")
for key, value in self.__dict__.items():
logging.info(f"### {key} = {value}")
def train(config):
model = BertForQuestionAnswering(config,
config.pretrained_model_dir)
if os.path.exists(config.model_save_path):
loaded_paras = torch.load(config.model_save_path,weights_only=True)
model.load_state_dict(loaded_paras)
logging.info("## 成功载入已有模型,进行追加训练......")
model = model.to(config.device)
model.train()
bert_tokenize = BertTokenizer.from_pretrained(config.pretrained_model_dir).tokenize
data_loader = LoadSQuADQuestionAnsweringDataset(vocab_path=config.vocab_path,
tokenizer=bert_tokenize,
batch_size=config.batch_size,
max_sen_len=config.max_sen_len,
max_query_length=config.max_query_len,
max_position_embeddings=config.max_position_embeddings,
pad_index=config.pad_token_id,
is_sample_shuffle=config.is_sample_shuffle,
doc_stride=config.doc_stride)
train_iter, test_iter, val_iter = \
data_loader.load_train_val_test_data(train_file_path=config.train_file_path,
test_file_path=config.test_file_path,
only_test=False)
optimizer = torch.optim.Adam(model.parameters(), lr=config.learning_rate)
lr_scheduler = get_scheduler(name='linear',
optimizer=optimizer,
num_warmup_steps=int(len(train_iter) * 0),
num_training_steps=int(config.epochs * len(train_iter)))
max_acc = 0
for epoch in range(config.epochs):
losses = 0
start_time = time.time()
for idx, (batch_input, batch_seg, batch_label, _, _, _, _) in enumerate(train_iter):
batch_input = batch_input.to(config.device) # [src_len, batch_size]
batch_seg = batch_seg.to(config.device)
batch_label = batch_label.to(config.device)
padding_mask = (batch_input == data_loader.PAD_IDX).transpose(0, 1)
loss, start_logits, end_logits = model(input_ids=batch_input,
attention_mask=padding_mask,
token_type_ids=batch_seg,
position_ids=None,
start_positions=batch_label[:, 0],
end_positions=batch_label[:, 1])
optimizer.zero_grad()
loss.backward()
optimizer.step()
lr_scheduler.step()
losses += loss.item()
acc_start = (start_logits.argmax(1) == batch_label[:, 0]).float().mean()
acc_end = (end_logits.argmax(1) == batch_label[:, 1]).float().mean()
acc = (acc_start + acc_end) / 2
if idx % 10 == 0:
logging.info(f"Epoch: {epoch}, Batch[{idx}/{len(train_iter)}], "
f"Train loss :{loss.item():.3f}, Train acc: {acc:.3f}")
if idx % 100 == 0:
y_pred = [start_logits.argmax(1), end_logits.argmax(1)]
y_true = [batch_label[:, 0], batch_label[:, 1]]
show_result(batch_input, data_loader.vocab.itos,
y_pred=y_pred, y_true=y_true)
end_time = time.time()
train_loss = losses / len(train_iter)
logging.info(f"Epoch: {epoch}, Train loss: "
f"{train_loss:.3f}, Epoch time = {(end_time - start_time):.3f}s")
if (epoch + 1) % config.model_val_per_epoch == 0:
acc = evaluate(val_iter, model,
config.device,
data_loader.PAD_IDX,
inference=False)
logging.info(f" ### Accuracy on val: {round(acc, 4)} max :{max_acc}")
if acc > max_acc:
max_acc = acc
torch.save(model.state_dict(), config.model_save_path)
def evaluate(data_iter, model, device, PAD_IDX, inference=False):
model.eval()
with torch.no_grad():
acc_sum, n = 0.0, 0
all_results = collections.defaultdict(list)
for batch_input, batch_seg, batch_label, batch_qid, _, batch_feature_id, _ in tqdm(data_iter):
batch_input = batch_input.to(device) # [src_len, batch_size]
batch_seg = batch_seg.to(device)
batch_label = batch_label.to(device)
padding_mask = (batch_input == PAD_IDX).transpose(0, 1)
start_logits, end_logits = model(input_ids=batch_input,
attention_mask=padding_mask,
token_type_ids=batch_seg,
position_ids=None)
# 将同一个问题下的所有预测样本的结果保存到一个list中,这里只对batchsize=1时有用
all_results[batch_qid[0]].append([batch_feature_id[0],
start_logits.cpu().numpy().reshape(-1),
end_logits.cpu().numpy().reshape(-1)])
if not inference:
acc_sum_start = (start_logits.argmax(1) == batch_label[:, 0]).float().sum().item()
acc_sum_end = (end_logits.argmax(1) == batch_label[:, 1]).float().sum().item()
acc_sum += (acc_sum_start + acc_sum_end)
n += len(batch_label)
model.train()
if inference:
return all_results
return acc_sum / (2 * n)
def show_result(batch_input, itos, num_show=5, y_pred=None, y_true=None):
"""
本函数的作用是在训练模型的过程中展示相应的结果
:param batch_input:
:param itos:
:param num_show:
:param y_pred:
:param y_true:
:return:
"""
count = 0
batch_input = batch_input.transpose(0, 1) # 转换为[batch_size, seq_len]形状
for i in range(len(batch_input)): # 取一个batch所有的原始文本
if count == num_show:
break
input_tokens = [itos[s] for s in batch_input[i]] # 将question+context 的ids序列转为字符串
start_pos, end_pos = y_pred[0][i], y_pred[1][i]
answer_text = " ".join(input_tokens[start_pos:(end_pos + 1)]).replace(" ##", "")
input_text = " ".join(input_tokens).replace(" ##", "").split('[SEP]')
question_text, context_text = input_text[0], input_text[1]
logging.info(f"### Question: {question_text}")
logging.info(f" ## Predicted answer: {answer_text}")
start_pos, end_pos = y_true[0][i], y_true[1][i]
true_answer_text = " ".join(input_tokens[start_pos:(end_pos + 1)])
true_answer_text = true_answer_text.replace(" ##", "")
logging.info(f" ## True answer: {true_answer_text}")
logging.info(f" ## True answer idx: {start_pos.cpu(), end_pos.cpu()}")
count += 1
def inference(config):
bert_tokenize = BertTokenizer.from_pretrained(config.pretrained_model_dir).tokenize
data_loader = LoadSQuADQuestionAnsweringDataset(vocab_path=config.vocab_path,
tokenizer=bert_tokenize,
batch_size=1, # 只能是1
max_sen_len=config.max_sen_len,
doc_stride=config.doc_stride,
max_query_length=config.max_query_len,
max_answer_length=config.max_answer_len,
max_position_embeddings=config.max_position_embeddings,
pad_index=config.pad_token_id,
n_best_size=config.n_best_size)
test_iter, all_examples = data_loader.load_train_val_test_data(test_file_path=config.test_file_path,
only_test=True)
model = BertForQuestionAnswering(config,
config.pretrained_model_dir)
if os.path.exists(config.model_save_path):
loaded_paras = torch.load(config.model_save_path,weights_only=True)
model.load_state_dict(loaded_paras)
logging.info("## 成功载入已有模型,开始进行推理......")
else:
raise ValueError(f"## 模型{config.model_save_path}不存在,请检查路径或者先训练模型......")
model = model.to(config.device)
all_result_logits = evaluate(test_iter, model, config.device,
data_loader.PAD_IDX, inference=True)
data_loader.write_prediction(test_iter, all_examples,
all_result_logits, config.dataset_dir)
logging.info(f"## 推理完毕, 预测结果已经写入: {config.dataset_dir}")
# 运行结束以后会在 SQuAD 数据集所在的目录下生成两个文件 best_result.json 和 best_n_result.json
# 然后去该目录下 data/SQuAD 运行 python evaluate-v1.1.py dev-v1.1.json best_result.json
# 就可以查看评估结果 {"exact_match": 80.82308420056765, "f1": 88.36083293486375}
# 上述结果使用当前 config 中的参数即可,勿需任何修改!
def interaction(config):
bert_tokenize = BertTokenizer.from_pretrained(config.pretrained_model_dir)
model = BertForQuestionAnswering(config,
config.pretrained_model_dir)
if os.path.exists(config.model_save_path):
loaded_paras = torch.load(config.model_save_path)
model.load_state_dict(loaded_paras)
logging.info("## 成功载入已有模型,开始进行推理......")
else:
logging.error(" \n ### -----------正在随机初始化一个模型进行测试使用 ------------ ###")
while True:
desc = input("####: 请输出文本描述:")
question = input("####: 请输出问题:")
# desc = "Architecturally, the school has a Catholic character. Atop the Main Building's gold dome is a"
# question = "What is the school's name?"
desc_token_ids = bert_tokenize(desc)["input_ids"]
question_token_ids = bert_tokenize(question)["input_ids"]
input_token = question_token_ids + desc_token_ids[1:]
seg = [0] * len(question_token_ids) + [1] * (len(desc_token_ids) - 1)
input_tensor = torch.tensor(input_token, dtype=torch.long).reshape(-1, 1)
seg_tensor = torch.tensor(seg, dtype=torch.long).reshape(-1, 1)
start_logits, end_logits = model(input_ids=input_tensor,
attention_mask=None,
token_type_ids=seg_tensor,
position_ids=None)
start_ids = torch.argsort(start_logits, dim=1).tolist()[0][::-1]
end_ids = torch.argsort(end_logits, dim=1).tolist()[0][::-1]
pretty_print(bert_tokenize, input_token, start_ids, end_ids)
def pretty_print(bert_tokenize, input_token, start_ids, end_ids):
# print(input_token)
first_sep_idx = input_token.index(102)
for start_id in start_ids:
for end_id in end_ids:
if start_id <= first_sep_idx or end_id <= first_sep_idx or start_id >= end_id \
or start_id >= len(input_token) or end_id >= len(input_token):
continue
print(start_id, end_id)
answer_text_idx = input_token[start_id:(end_id + 1)]
answer_text = bert_tokenize.decode(answer_text_idx)
print("答案:", answer_text)
return
if __name__ == '__main__':
model_config = ModelConfig()
train(config=model_config)
inference(model_config)
# interaction(model_config)