-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path2_create_mnist_tfrecords.py
174 lines (139 loc) · 5.78 KB
/
2_create_mnist_tfrecords.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import os
import numpy as np
import tensorflow as tf
from helper import parse_tfrecord
def int64_feature(values):
if not isinstance(values, (tuple, list)):
values = [values]
return tf.train.Feature(int64_list=tf.train.Int64List(value=values))
def bytes_feature(values):
return tf.train.Feature(bytes_list=tf.train.BytesList(value=[values]))
def image_to_tfexample(image_data, class_id):
return tf.train.Example(features=tf.train.Features(feature={
'image/encoded': bytes_feature(image_data),
'image/class/label': int64_feature(class_id),
}))
def add_to_tfrecord(images, labels, tfrecord_writer):
"""
:param images: [None, 784] float32 0.0 ~ 1.0 valued!!
:param labels: [None] integer
:param tfrecord_writer: wrtier object
:return: None
"""
# convert to desired shape
desired_shape = (28, 28, 1)
# parse numer of images
num_images = images.shape[0]
# start converting...
with tf.Graph().as_default():
image = tf.placeholder(dtype=tf.float32, shape=desired_shape)
converted_dtype = tf.image.convert_image_dtype(image, dtype=tf.uint8)
encoded_png = tf.image.encode_png(converted_dtype)
with tf.Session('') as sess:
for ii in range(num_images):
print_idx = ii + 1
if print_idx % 1000 == 0:
print('Converting image {:d}/{:d}'.format(print_idx, num_images))
reshaped = np.reshape(images[ii], newshape=desired_shape)
png_string = sess.run(encoded_png, feed_dict={image: reshaped})
example = image_to_tfexample(png_string, labels[ii])
tfrecord_writer.write(example.SerializeToString())
return
def create_mnist_data():
from tensorflow.examples.tutorials.mnist import input_data
# set parameters
n_split = 2
output_dir = './data/mnist-tfrecord'
if not os.path.exists(output_dir):
os.makedirs(output_dir)
# load mnist data
mnist = input_data.read_data_sets('./data/mnist')
# mnist = tf.contrib.learn.datasets.load_dataset('mnist')
# create train examples
train_images = mnist.train.images
train_labels = mnist.train.labels
train_labels = np.asarray(train_labels, dtype=np.int32)
# split data
splitted_train_images = np.array_split(train_images, n_split)
splitted_train_labels = np.array_split(train_labels, n_split)
for ii in range(n_split):
tfrecord_fn = os.path.join(output_dir, 'mnist-train-{:02d}.tfrecord'.format(ii))
with tf.python_io.TFRecordWriter(tfrecord_fn) as tfrecord_writer:
add_to_tfrecord(splitted_train_images[ii], splitted_train_labels[ii], tfrecord_writer)
# create validation examples
eval_images = mnist.test.images
eval_labels = mnist.test.labels
eval_labels = np.asarray(eval_labels, dtype=np.int32)
# split data
splitted_eval_images = np.array_split(eval_images, n_split)
splitted_eval_labels = np.array_split(eval_labels, n_split)
for ii in range(n_split):
tfrecord_fn = os.path.join(output_dir, 'mnist-val-{:02d}.tfrecord'.format(ii))
with tf.python_io.TFRecordWriter(tfrecord_fn) as tfrecord_writer:
add_to_tfrecord(splitted_eval_images[ii], splitted_eval_labels[ii], tfrecord_writer)
return
def test_tfrecords():
n_train = 55000
n_eval = 10000
epochs = 1
batch_size = 1000
filenames_tensor = tf.placeholder(tf.string, shape=[None])
dataset = tf.data.TFRecordDataset(filenames_tensor)
dataset = dataset.map(parse_tfrecord)
dataset = dataset.shuffle(buffer_size=n_train)
dataset = dataset.prefetch(batch_size)
dataset = dataset.repeat(epochs)
dataset = dataset.batch(batch_size)
iterator = dataset.make_initializable_iterator()
next_element = iterator.get_next()
mnist_tfrecord_dir = './data/mnist-tfrecord'
training_fn_list = ['mnist-train-00.tfrecord', 'mnist-train-01.tfrecord']
validate_fn_list = ['mnist-val-00.tfrecord', 'mnist-val-01.tfrecord']
training_fn_list = [os.path.join(mnist_tfrecord_dir, fn) for fn in training_fn_list]
validate_fn_list = [os.path.join(mnist_tfrecord_dir, fn) for fn in validate_fn_list]
print('n_train: {:d}, n_eval: {:d}, epochs: {:d}'.format(n_train, n_eval, epochs))
train_total_size = 0
val_total_size = 0
with tf.Session() as sess:
sess.run(iterator.initializer, feed_dict={filenames_tensor: training_fn_list})
while True:
try:
image, label = sess.run(next_element)
train_total_size += label.shape[0]
print(label[:10])
except tf.errors.OutOfRangeError:
print('End of dataset')
print('Train examples examined: {:d}'.format(train_total_size))
break
sess.run(iterator.initializer, feed_dict={filenames_tensor: validate_fn_list})
while True:
try:
image, label = sess.run(next_element)
val_total_size += label.shape[0]
except tf.errors.OutOfRangeError:
print('End of dataset')
print('Eval examples examined: {:d}'.format(val_total_size))
break
# ===========================================
# Expected output
# ===========================================
# n_train: 55000, n_eval: 10000, epochs: 1
# End of dataset
# Train examples examined: 55000
# End of dataset
# Eval examples examined: 10000
#
# n_train: 55000, n_eval: 10000, epochs: 2
# End of dataset
# Train examples examined: 110000
# End of dataset
# Eval examples examined: 20000
return
def main():
# create tfrecord files
# create_mnist_data()
# check tfrecord files
test_tfrecords()
return
if __name__ == '__main__':
main()