-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
53 lines (43 loc) · 1.2 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import tensorflow as tf
from tensorflow.keras.applications import VGG16
from tensorflow.keras.layers import Flatten, Dense
# Load the training and test data
train_data = tf.keras.preprocessing.image_dataset_from_directory(
"train",
labels="inferred",
label_mode="categorical",
batch_size=32,
image_size=(224, 224),
)
test_data = tf.keras.preprocessing.image_dataset_from_directory(
"test",
labels="inferred",
label_mode="categorical",
batch_size=32,
image_size=(224, 224),
)
# Define the base VGG16 model
base_model = VGG16(
weights="imagenet",
include_top=False,
input_shape=(224, 224, 3),
)
# Create a new model by specifying the input and output layers
model = tf.keras.Sequential()
model.add(base_model) # Add the VGG16 base model
# Add a Flatten layer
model.add(Flatten())
# Add a Dense classification layer
model.add(Dense(24, activation="softmax"))
# Compile the model
model.compile(
optimizer="adam",
loss="categorical_crossentropy",
metrics=["accuracy"],
)
# Train the model
model.fit(train_data, epochs=10)
# Evaluate the model
test_loss, test_accuracy = model.evaluate(test_data)
# Print the test accuracy
print("Test accuracy:", test_accuracy)