-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathJobDataClass.py
164 lines (134 loc) · 6.31 KB
/
JobDataClass.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
"""
@author: Luiza Sayfullina
"""
import re, os
import numpy as np
import torchtext.vocab as vocab
from sklearn.feature_extraction.text import CountVectorizer
import unittest
from nltk.tokenize import word_tokenize
from nltk.stem import WordNetLemmatizer
from nltk.corpus import stopwords
from gensim.models import Word2Vec
import csv
class JobData():
def __init__(self, **kwargs):
try:
self.max_voc = kwargs['max_voc_size']
self.max_num_words = kwargs['max_num_words']
self.data_folder = kwargs['data_folder']
self.mode = kwargs['mode']
except:
self.max_voc = 5000
self.max_num_words = 50
self.data_folder = './dataset'
self.mode = 'tagged' # tagged or masked or unmodified
self.Xtrain, self.Ytrain, self.SoftSkillsTrain = self.load_data(filename='job_train.csv')
self.Xtest, self.Ytest, self.SoftSkillsTest = self.load_data(filename='job_test.csv')
max_number_words = -1
for s in self.SoftSkillsTrain:
if len(s.split(' ')) > max_number_words:
max_number_words = len(s.split(' '))
for s in self.SoftSkillsTest:
if len(s.split(' ')) > max_number_words:
max_number_words = len(s.split(' '))
self.find_vocabulary()
self.get_glove_embedding()
# self.get_word_indices_all()
def load_data(self, filename='job_train.csv'):
"""
The list of mode options:
'tagged' - ... <b> soft skill </b> ...
'masked' - ... xxx xxx ...
'unmodified' - ... soft skill ...
"""
Y = []
X = []
soft_skills = []
mode = self.mode
with open(os.path.join(self.data_folder, filename)) as csvfile:
reader = csv.DictReader(csvfile)
for i, row in enumerate(reader):
Y.append(row['is_soft_skill'])
soft_skills.append(row['soft_skill'])
if mode == 'unmodified':
len_soft_skill = len(row['soft_skill'].split(' '))
xxx_string = ' '.join(['xxx'] * len_soft_skill)
X.append(row['context'].replace(xxx_string, row['soft_skill']))
if mode == 'tagged':
len_soft_skill = len(row['soft_skill'].split(' '))
xxx_string = ' '.join(['xxx'] * len_soft_skill)
X.append(row['context'].replace(xxx_string, 'bbb ' + row['soft_skill'] + ' eee'))
if mode == 'masked':
X.append(row['context'])
return X, Y, soft_skills
def find_vocabulary(self):
'''Finds the vocabulary
according to the preprocessing options
like lemmatization, stemming selected
'''
self.count_vect = CountVectorizer(decode_error='replace', max_features=self.max_voc)
self.count_vect.fit_transform(self.Xtrain).toarray()
self.vocabulary = self.count_vect.get_feature_names()
if self.mode == 'tagged' and ('bbb' not in self.vocabulary or 'eee' not in self.vocabulary):
print('tags are not in the vocabulary')
self.vocabulary.append('<UNK>')
self.vocabulary_set = set(self.vocabulary)
self.voc_to_index = dict({word: i for i, word in enumerate(self.vocabulary)})
def get_glove_embedding(self):
# "from:https://github.com/spro/practical-pytorch/blob/master/glove-word-vectors/glove-word-vectors.ipynb"
dim = 200 # fasttext.en.300d
glove = vocab.GloVe(name='6B', dim=200)
# model = Word2Vec.load('luiza_test')
self.embed_matrix = np.random.uniform(-0.01, 0.01, size=(len(self.vocabulary), dim))
# glove_indices = {i:model.wv[word] for i, word in enumerate(self.vocabulary) if word in model.wv}
glove_indices = {glove.stoi[word]: i for i, word in enumerate(self.vocabulary) if word in glove.stoi}
keys = np.array(list(glove_indices.keys()))
values = np.array(list(glove_indices.values()))
self.embed_matrix[values] = glove.vectors.numpy()[keys]
def get_word_indices_all(self, return_lens=False):
if return_lens:
(widx_train, lens_train) = self.get_word_indices(self.Xtrain, return_lens=True)
(widx_test, lens_test) = self.get_word_indices(self.Xtest, return_lens=True)
else:
widx_train = self.get_word_indices(self.Xtrain)
widx_test = self.get_word_indices(self.Xtest)
widx_ss_train = self.get_soft_skill_indices(self.SoftSkillsTrain)
widx_ss_test = self.get_soft_skill_indices(self.SoftSkillsTest)
if return_lens:
return (widx_train, lens_train, self.Ytrain, widx_ss_train), (widx_test, lens_test, self.Ytest, widx_ss_test)
else:
return (widx_train, self.Ytrain, widx_ss_train), (widx_test, self.Ytest, widx_ss_test)
def get_word_indices(self, X, return_lens=False):
N = len(X)
word_index_matrix = np.ones((N, self.max_num_words)) * self.voc_to_index['<UNK>']
lens_array = []
unk_index = self.voc_to_index['<UNK>']
k = 0
for i, sentence in enumerate(X):
words = word_tokenize(sentence)
words_ind = [self.voc_to_index.get(word, unk_index) for word in words if word in self.vocabulary]
if len(words_ind) >= 3:
word_index_matrix[k, :len(words_ind)] = words_ind
k+=1
lens_array.append(len(words_ind))
if return_lens:
return word_index_matrix[:k, :], lens_array
else:
return word_index_matrix[:k, :]
def get_soft_skill_indices(self, X):
N = len(X)
word_index_matrix = np.ones((N, 10)) * self.voc_to_index['<UNK>']
unk_index = self.voc_to_index['<UNK>']
k = 0
for i, sentence in enumerate(X):
words = word_tokenize(sentence)
words_ind = [self.voc_to_index.get(word, unk_index) for word in words if word in self.vocabulary]
if words_ind:
word_index_matrix[i, :len(words_ind)] = words_ind
else:
print(i, '-- no vector for soft skill:', sentence)
return word_index_matrix
if __name__ == '__main__':
dataset = JobData()
(Xtrain, Ytrain, widx_ss_train), (Xtest, Ytest, widx_ss_test) = dataset.get_word_indices_all()