-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
198 lines (158 loc) · 5.26 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import gymnasium as gym
import utils
from ddqn import DDQNAgent
import numpy as np
import os
import torch
import warnings
from argparse import ArgumentParser
import pandas as pd
from preprocess import AtariEnv
from ale_py import ALEInterface, LoggerMode
from config import environments
warnings.simplefilter("ignore")
ALEInterface.setLoggerMode(LoggerMode.Error)
def run_ddqn(args):
def make_env():
return AtariEnv(
args.env,
shape=(84, 84),
repeat=4,
clip_rewards=True,
).make()
envs = gym.vector.AsyncVectorEnv([make_env for _ in range(args.n_envs)])
save_prefix = args.env.split("/")[-1]
print(f"\nEnvironment: {save_prefix}")
print(f"Obs.Space: {envs.single_observation_space.shape}")
print(f"Act.Space: {envs.single_action_space.n}")
agent = DDQNAgent(
args.env,
envs.single_observation_space.shape,
envs.single_action_space.n,
mem_size=30000,
batch_size=64,
eps_dec=5e-7,
replace_target_count=1000,
)
if args.continue_training:
if os.path.exists(f"weights/{save_prefix}_dqn.pt"):
agent.load_checkpoints()
best_score = -np.inf
avg_score = np.nan
score = np.zeros(args.n_envs)
history, metrics = [], []
fixed_states = torch.tensor(utils.collect_fixed_states(envs)).to(agent.q1.device)
states, _ = envs.reset()
for i in range(args.n_steps):
actions = [agent.choose_action(state) for state in states]
next_states, rewards, term, trunc, _ = envs.step(actions)
for j in range(args.n_envs):
agent.store_transition(
states[j],
actions[j],
rewards[j],
next_states[j],
term[j] or trunc[j],
)
score[j] += rewards[j]
if term[j] or trunc[j]:
history.append(score[j])
score[j] = 0
agent.learn()
states = next_states
if len(history) > 0:
avg_score = np.mean(history[-100:])
if avg_score > best_score:
best_score = avg_score
agent.save_checkpoint()
with torch.no_grad():
avg_q_value = (
torch.minimum(agent.q1(fixed_states), agent.q2(fixed_states))
.mean()
.cpu()
.numpy()
)
metrics.append(
{
"episode": i + 1,
"average_score": avg_score,
"best_score": best_score,
"average_q_value": avg_q_value,
}
)
ep_str = f"[Epoch {i + 1:05}/{args.n_steps}]"
g_str = f" Games = {len(history)}"
avg_str = f" Avg.Score = {avg_score:.2f}"
q_str = f" Avg.Q = {avg_q_value:.2e}"
eps_str = f" Eps. = {agent.epsilon:.2f}"
print(ep_str + g_str + avg_str + q_str + eps_str, end="\r")
torch.save(agent.q1.state_dict(), f"weights/{save_prefix}_q1_final.pt")
torch.save(agent.q2.state_dict(), f"weights/{save_prefix}_q2_final.pt")
save_results(args.env, metrics, agent)
def save_results(env_name, metrics, agent):
save_prefix = env_name.split("/")[-1]
df = pd.DataFrame(metrics)
df.to_csv(f"csv/{save_prefix}_metrics.csv", index=False)
utils.plot_metrics(save_prefix, df)
save_best_version(env_name, agent)
def save_best_version(env_name, agent, seeds=100):
# actually, its usally better to use the final weights...
# agent.load_checkpoint()
best_total_reward = float("-inf")
best_frames = None
env = AtariEnv(
env_name,
shape=(84, 84),
repeat=4,
clip_rewards=False,
).make()
save_prefix = env_name.split("/")[-1]
for s in range(seeds):
state, _ = env.reset(seed=s)
frames = []
total_reward = 0
term, trunc = False, False
while not term and not trunc:
frames.append(env.render())
action = agent.choose_action(state)
next_state, reward, term, trunc, _ = env.step(action)
total_reward += reward
state = next_state
if total_reward > best_total_reward:
best_total_reward = total_reward
best_frames = frames
save_prefix = env_name.split("/")[-1]
utils.save_animation(best_frames, f"environments/{save_prefix}.gif")
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument(
"-e", "--env", default=None, help="Environment name from Gymnasium"
)
parser.add_argument(
"--n_steps",
default=100000,
type=int,
help="Number of learning steps to run during training",
)
parser.add_argument(
"--n_envs",
default=32,
type=int,
help="Number of parallel environments",
)
parser.add_argument(
"--continue_training",
default=True,
type=bool,
help="Continue training from saved weights.",
)
args = parser.parse_args()
for fname in ["metrics", "environments", "weights", "csv"]:
if not os.path.exists(fname):
os.makedirs(fname)
if args.env:
run_ddqn(args)
else:
for env_name in environments:
args.env = env_name
run_ddqn(args)