-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathquadratic_integer.py
180 lines (152 loc) · 5.6 KB
/
quadratic_integer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
"""Symbolic integer arithmetic in quadratic integer rings"""
def is_square(num):
"""Return True iff num is a perfect square."""
if num <= 0:
return num == 0
lo = 10**((len(str(num))-1)//2)
hi = lo * 10
while lo <= hi:
mid = lo + (hi-lo)//2
if mid * mid == num:
return True
if mid * mid < num:
lo = mid + 1
else:
hi = mid - 1
return False
class QuadraticIntegerRing:
"""Class representing \mathbb Z[x], where x is a non-integer root of
X**2 - P*X + Q = 0
"""
def __init__(self, P, Q, sym="x"):
"""Return a symbolic representation of \mathbb Z[x]."""
for _ in (P, Q):
if not isinstance(_, int):
raise ValueError(f"{_} (coefficients must be integers)")
# check if X**2 - P*X + Q is irreducible over the integers;
# since any rational root must be an integer by the rational
# roots theorem, we get a quadratic ring only if the polynomial
# is irreducible (i.e. has no integer root)
disc = P*P - 4*Q
if is_square(disc):
raise ValueError(f"{P}, {Q} (polynomial is not irreducible)")
self._P = P # negative linear coefficient
self._Q = Q # constant coefficient
self._SYM = sym
def __eq__(self, other):
"""Return self == other."""
if isinstance(other, QuadraticIntegerRing):
return self._P == other._P and self._Q == other._Q
return NotImplemented
def __req__(self, other):
"""Return other == self."""
return self == other
class QuadraticInteger:
"""Class representing an element in a QuadraticIntegerRing"""
def __init__(self, base_ring, a, b):
"""Return a new QuadraticInteger in base_ring with
rational/real part a and irrational/imaginary part b.
"""
for _ in (a, b):
if not isinstance(_, int):
raise ValueError(f"{_} (coefficients must be integers)")
if not isinstance(base_ring, QuadraticIntegerRing):
raise ValueError(
f"{base_ring} (base_ring must be a QuadraticIntegerRing)"
)
self._parent = base_ring
self._r = a # rational/real part
self._i = b # irrational/imaginary part
def __int__(self):
"""Return the rational/real part of self."""
return self._r
def __neg__(self):
"""Return -self."""
return QuadraticInteger(self._parent, -self._r, -self._i)
def __same_base(self, other):
"""Check if self and other belong to the same base ring."""
return isinstance(other, QuadraticInteger) and\
self._parent == other._parent
def __add__(self, other):
"""Return self + other."""
if isinstance(other, int):
return QuadraticInteger(self._parent, self._r + other, self._i)
if self.__same_base(other):
return QuadraticInteger(
self._parent,
self._r + other._r,
self._i + other._i
)
return NotImplemented
def __sub__(self, other):
"""Return self - other."""
return self + -other
def __mul__(self, other):
"""Return self * other."""
if isinstance(other, int):
return QuadraticInteger(
self._parent,
self._r * other,
self._i * other
)
if self.__same_base(other):
# (a + bx)(c + dx) = (ac - bdQ) + (ad + bc + bdP)x
return QuadraticInteger(
self._parent,
self._r*other._r - self._i*other._i*self._parent._Q,
self._r*other._i + self._i*other._r +
self._i*other._i*self._parent._P
)
return NotImplemented
def __eq__(self, other):
"""Return self == other."""
if isinstance(other, int):
return self._r == other and self._i == 0
if self.__same_base(other):
return self._r == other._r and self._i == other._i
return NotImplemented
def __radd__(self, other):
"""Return other + self."""
return self + other
def __rsub__(self, other):
"""Return other - self."""
return -self + other
def __rmul__(self, other):
"""Return other * self."""
return self * other
def __req__(self, other):
"""Return other == self."""
return self == other
def __pow__(self, other):
"""Return self**other."""
if isinstance(other, int) and other >= 0:
if other == 0:
return 1
if other % 2 == 0:
sqrt = self**(other//2)
return sqrt * sqrt
return self * self**(other-1)
raise ValueError(f"{other} (exponent must be a positive integer)")
def __repr__(self):
rat = self._r
irr = f"{abs(self._i)}*{self._parent._SYM}"
sgn = "+" if self._i > 0 else "-"
if self._i == 0:
return f"{rat}"
if abs(self._i) == 1:
irr = self._parent._SYM
if rat == 0:
return f"{irr}" if sgn == "+" else f"{sgn}{irr}"
return f"{rat} {sgn} {irr}"
def conj(self):
"""Return the (algebraic) conjugate of self."""
# conj(a + bx) = a + by, where y = P-x
# so a + by = a + b(P-x) = (a + bP) - bx
return QuadraticInteger(
self._parent,
self._r + self._i*self._parent._P,
-self._i
)
def norm(self):
"""Return the (algebraic) norm of self."""
return int(self.conj() * self)