-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy path.Rhistory
executable file
·512 lines (512 loc) · 22.5 KB
/
.Rhistory
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
hc_annotations(labels = list(x = 10, y = 200, xAxis = 0, yAxis = 0), text = "Middle")
library(highcharter)
ok <- 50
good <- 20
perfect <- 10
highchart(width = 600, height = 400) %>%
hc_chart(type = "solidgauge", marginTop = 50) %>%
hc_tooltip(borderWidth = 0,backgroundColor = 'none',shadow = FALSE,style = list(fontSize = '16px'),
pointFormat = '<span style="font-size:1.5em; color: {point.color}; font-weight: bold">{point.y} {series.name}</span>',
positioner = JS("function (labelWidth, labelHeight) {return {x: 176,y: 200};}")) %>%
hc_pane(startAngle = 0,endAngle = 360,
background = list(
list(outerRadius = '112%',innerRadius = '88%',backgroundColor = JS("Highcharts.Color('#f0b4b5').setOpacity(0.1).get()"),borderWidth = 0),
list(outerRadius = '87%',innerRadius = '63%',backgroundColor = JS("Highcharts.Color('#f0b4b5').setOpacity(0.1).get()"),borderWidth = 0),
list(outerRadius = '62%',innerRadius = '38%',backgroundColor = JS("Highcharts.Color('#f0b4b5').setOpacity(0.1).get()"),borderWidth = 0))) %>%
hc_yAxis(min = 0,max = 100,lineWidth = 0,tickPositions = list()) %>%
hc_plotOptions(solidgauge = list(borderWidth = '34px',dataLabels = list(enabled = FALSE),linecap = 'round',stickyTracking = FALSE)) %>%
hc_add_series(name = "With DOI",borderColor = '#fae6e8',data = list(list(color = '#e43235',radius = "100%",innerRadius = "100%",y = ok))) %>%
hc_add_series(name = "With abstract",borderColor = '#f0b4b5',data = list(list(color = '#e43235',radius = "75%",innerRadius = "75%",y = good))) %>%
hc_add_series(name = "Complete",borderColor = '#e43235',data = list(list(color = '#e43235',radius = "50%",innerRadius = "50%",y = perfect))) %>%
hc_annotations(list(labels = list(x = 10, y = 200, xAxis = 0, yAxis = 0), text = "Middle"))
highchart(width = 600, height = 400) %>%
hc_chart(type = "solidgauge", marginTop = 50) %>%
hc_tooltip(borderWidth = 0,backgroundColor = 'none',shadow = FALSE,style = list(fontSize = '16px'),
pointFormat = '<span style="font-size:1.5em; color: {point.color}; font-weight: bold">{point.y} {series.name}</span>',
positioner = JS("function (labelWidth, labelHeight) {return {x: 176,y: 200};}")) %>%
hc_pane(startAngle = 0,endAngle = 360,
background = list(
list(outerRadius = '112%',innerRadius = '88%',backgroundColor = JS("Highcharts.Color('#f0b4b5').setOpacity(0.1).get()"),borderWidth = 0),
list(outerRadius = '87%',innerRadius = '63%',backgroundColor = JS("Highcharts.Color('#f0b4b5').setOpacity(0.1).get()"),borderWidth = 0),
list(outerRadius = '62%',innerRadius = '38%',backgroundColor = JS("Highcharts.Color('#f0b4b5').setOpacity(0.1).get()"),borderWidth = 0))) %>%
hc_yAxis(min = 0,max = 100,lineWidth = 0,tickPositions = list()) %>%
hc_plotOptions(solidgauge = list(borderWidth = '34px',dataLabels = list(enabled = FALSE),linecap = 'round',stickyTracking = FALSE)) %>%
hc_add_series(name = "With DOI",borderColor = '#fae6e8',data = list(list(color = '#e43235',radius = "100%",innerRadius = "100%",y = ok))) %>%
hc_add_series(name = "With abstract",borderColor = '#f0b4b5',data = list(list(color = '#e43235',radius = "75%",innerRadius = "75%",y = good))) %>%
hc_add_series(name = "Complete",borderColor = '#e43235',data = list(list(color = '#e43235',radius = "50%",innerRadius = "50%",y = perfect))) %>%
hc_add_annotation(xValue = 100, yValue = 200, title = list(text = 'test'))
library(highcharter)
ok <- 50
good <- 20
perfect <- 10
highchart(width = 600, height = 400) %>%
hc_chart(type = "solidgauge", marginTop = 50) %>%
hc_tooltip(borderWidth = 0,backgroundColor = 'none',shadow = FALSE,style = list(fontSize = '16px'),
pointFormat = '<span style="font-size:1.5em; color: {point.color}; font-weight: bold">{point.y} {series.name}</span>',
positioner = JS("function (labelWidth, labelHeight) {return {x: 176,y: 200};}")) %>%
hc_pane(startAngle = 0,endAngle = 360,
background = list(
list(outerRadius = '112%',innerRadius = '88%',backgroundColor = JS("Highcharts.Color('#f0b4b5').setOpacity(0.1).get()"),borderWidth = 0),
list(outerRadius = '87%',innerRadius = '63%',backgroundColor = JS("Highcharts.Color('#f0b4b5').setOpacity(0.1).get()"),borderWidth = 0),
list(outerRadius = '62%',innerRadius = '38%',backgroundColor = JS("Highcharts.Color('#f0b4b5').setOpacity(0.1).get()"),borderWidth = 0))) %>%
hc_yAxis(min = 0,max = 100,lineWidth = 0,tickPositions = list()) %>%
hc_plotOptions(solidgauge = list(borderWidth = '34px',dataLabels = list(enabled = FALSE),linecap = 'round',stickyTracking = FALSE)) %>%
hc_add_series(name = "With DOI",borderColor = '#fae6e8',data = list(list(color = '#e43235',radius = "100%",innerRadius = "100%",y = ok))) %>%
hc_add_series(name = "With abstract",borderColor = '#f0b4b5',data = list(list(color = '#e43235',radius = "75%",innerRadius = "75%",y = good))) %>%
hc_add_series(name = "Complete",borderColor = '#e43235',data = list(list(color = '#e43235',radius = "50%",innerRadius = "50%",y = perfect))) %>%
hc_add_annotation(labels = list(
list(
point = list(
xAxis = 0,
yAxis = 0,
x = datetime_to_timestamp(as.Date("2017/01/02")),
y = 1.5
))), title = list(text = 'test'))
runApp('inst/shiny-examples/bibfix')
runApp('inst/shiny-examples/bibfix')
runApp('inst/shiny-examples/bibfix')
runApp('inst/shiny-examples/bibfix')
setwd("~/OneDrive - SEI/ESHackathon/4.Remote 2020/bibfix/inst/shiny-examples/bibfix")
rsconnect::deployApp()
install.packages("rsconnect")
rsconnect::deployApp()
shiny::runApp('inst/shiny-examples/bibfix')
data <- read.csv('inst/extdata/data.csv')
if (is.data.frame(data) == FALSE){
stop('Please ensure the input object is a data frame')
}
#add missing columns where necessary (ensures build below works even if fields not present)
if(is.null(data$source_type) == TRUE){data$source_type <- NA}
if(is.null(data$author) == TRUE){data$author <- NA}
if(is.null(data$year) == TRUE){data$year <- NA}
if(is.null(data$title) == TRUE){data$title <- NA}
if(is.null(data$journal) == TRUE){data$journal <- NA}
if(is.null(data$volume) == TRUE){data$volume <- NA}
if(is.null(data$issue) == TRUE){data$issue <- NA}
if(is.null(data$start_page) == TRUE){data$start_page <- NA}
if(is.null(data$end_page) == TRUE){data$end_page <- NA}
if(is.null(data$abstract) == TRUE){data$abstract <- NA}
if(is.null(data$doi) == TRUE){data$doi <- NA}
if(is.null(data$publisher) == TRUE){data$publisher <- NA}
if(is.null(data$url) == TRUE){data$url <- NA}
if(is.null(data$notes) == TRUE){data$notes <- NA}
if(is.null(data$database) == TRUE){data$database <- NA}
if(is.null(data$AN) == TRUE){data$AN <- NA}
if(is.null(data$M1) == TRUE){data$M1 <- NA}
View(data)
#create RIS file
ris <- paste(paste0('\n',
'TY - ', data$source_type, '\n',
'AU - ', data$author, '\n',
'TI - ', data$title, '\n',
'PY - ', data$year, '\n',
'AB - ', data$abstract, '\n',
'SP - ', data$start_page, '\n',
'EP - ', data$end_page, '\n',
'JF - ', data$journal, '\n',
'VL - ', data$volume, '\n',
'IS - ', data$issue, '\n',
'DO - ', data$doi, '\n',
'UR - ', data$url, '\n',
'PB - ', data$publisher, '\n',
'N1 - ', data$notes, '\n',
'M1 - ', data$M1, '\n',
'DB - ', data$DB, '\n',
'AN - ', data$AN, '\n',
'ER - '),
collapse = '\n')
runApp('inst/shiny-examples/bibfix')
#replace NAs with ''
data[data==NA]=''
View(data)
#replace NAs with ''
data[is.na(data)==TRUE]=''
runApp('inst/shiny-examples/bibfix')
file <- file.choose()
refs <- synthesisr::read_refs(file)
refs$intID <- as.numeric(rownames(refs))
#store original data for additional column extraction later
orig_refs <- refs
####Tidy and subset####
#if vital columns missing, replace with NAs
if(is.null(refs$source_type) == TRUE){refs$source_type <- NA}
if(is.null(refs$author) == TRUE){refs$author <- NA}
if(is.null(refs$year) == TRUE){refs$year <- NA}
if(is.null(refs$title) == TRUE){refs$title <- NA}
if(is.null(refs$journal) == TRUE){refs$journal <- NA}
if(is.null(refs$volume) == TRUE){refs$volume <- NA}
if(is.null(refs$issue) == TRUE){refs$issue <- NA}
if(is.null(refs$start_page) == TRUE){refs$start_page <- NA}
if(is.null(refs$end_page) == TRUE){refs$end_page <- NA}
if(is.null(refs$abstract) == TRUE){refs$abstract <- NA}
if(is.null(refs$doi) == TRUE){refs$doi <- NA}
if(is.null(refs$publisher) == TRUE){refs$publisher <- NA}
if(is.null(refs$url) == TRUE){refs$url <- NA}
#replace Google Scholar incomplete fields based on presence of ellipsis '…'
refs[] <- lapply(refs, function(x) replace(x, grep("[…]", x), NA))
#if abstracts selected to be replaced, then replace with NA
if(replace_abstracts == TRUE){refs$abstract <- NA}
#select vital columns for searching
refs <- refs[c('source_type', "author", "year", "title", "journal", "volume", "issue", "start_page", "end_page", "abstract", "doi", "publisher", "url", "intID")]
#convert all columns to character strings
refs <- dplyr::mutate_all(refs, as.character)
#convert all 'NA's to NAs
refs[refs=="NA"]=NA
#subset records missing data
#create vectors of missing data for each row
refs$missing_data <- ''
for(i in 1:nrow(refs)){
row <- refs[i,]
missingCols <- paste0(names(refs)[which(is.na(row) == TRUE)], collapse = '; ')
refs$missing_data[i] <- missingCols
}
#subset based on missing data
missing_refs <- subset(refs, missing_data != '')
non_missing <- subset(refs, missing_data == '')
missing_refs <- dplyr::select(missing_refs, -c(missing_data))
non_missing <- dplyr::select(non_missing, -c(missing_data))
refs <- dplyr::select(refs, -c(missing_data))
####End Tidy and subset####
####DOI section####
#subset records with a DOI (easier to search)
doi_refs <- missing_refs[!is.na(missing_refs$doi),]
if(nrow(doi_refs)==0){
doi_refs <- NULL
} else {
#find missing records with DOI on Open Alex
#search for dois
doi_input <- data.frame(ids = doi_refs$doi,
type = 'doi')
df1 <- data.frame()
for (i in 1:length(doi_input$ids)){
query_work <- oaQueryBuild(
identifier = paste0("doi:https://doi.org/", doi_input$ids[i]),
entity = "works"
)
res <- oaApiRequest(
query_url = query_work
)
if(length(unlist(res))==0){
df1 <- df1
} else {
df1 <- dplyr::bind_rows(df1, oa2df(res, entity = "works"))
}
}
#Tidy results df
#rename result dataframe columns to match inputs
names(df1) <- sub('TI', 'title', names(df1))
names(df1) <- sub('AB', 'abstract', names(df1))
names(df1) <- sub('SO', 'journal', names(df1))
names(df1) <- sub('PU', 'publisher', names(df1))
names(df1) <- sub('PY', 'year', names(df1))
names(df1) <- sub('DI', 'doi', names(df1))
names(df1) <- sub('DT', 'source_type', names(df1))
names(df1) <- sub('volume', 'volume', names(df1))
names(df1) <- sub('issue', 'issue', names(df1))
names(df1) <- sub('first_page', 'start_page', names(df1))
names(df1) <- sub('last_page', 'end_page', names(df1))
names(df1) <- sub('URL', 'url', names(df1))
#remove df$doi URL stem
df1$doi <- gsub('https://doi.org/', '', df1$doi)
#remove irrelevant columns from df1 results
df1 <- dplyr::select(df1, c(author, year, title, journal, volume, issue, start_page, end_page, publisher, doi, abstract, source_type, url))
#collapse authors list
new_author <- list()
for (i in 1:length(df1$author)) {
new_author <- unlist(c(new_author, paste0(df1$author[[i]]$au_name, collapse = '; ')))
}
df1$author <- new_author
#lookup missing information
#lookup authors
doi_refs <- doi_refs %>%
dplyr::left_join(df1, by = c("doi")) %>%
dplyr::mutate(author = ifelse(is.na(author.x), author.y, author.x)) %>%
dplyr::select(-c(author.x, author.y)) %>%
dplyr::select(-c(contains('.y')))
names(doi_refs) <- sub('.x', '', names(doi_refs))
#lookup title
doi_refs <- doi_refs %>%
dplyr::left_join(df1, by = c("doi")) %>%
dplyr::mutate(title = ifelse(is.na(title.x), title.y, title.x)) %>%
dplyr::select(-c(title.x, title.y)) %>%
dplyr::select(-c(contains('.y')))
names(doi_refs) <- sub('.x', '', names(doi_refs))
#lookup abstract
doi_refs <- doi_refs %>%
dplyr::left_join(df1, by = c("doi")) %>%
dplyr::mutate(abstract = ifelse(is.na(abstract.x), abstract.y, abstract.x)) %>%
dplyr::select(-c(abstract.x, abstract.y)) %>%
dplyr::select(-c(contains('.y')))
names(doi_refs) <- sub('.x', '', names(doi_refs))
#lookup journal
doi_refs <- doi_refs %>%
dplyr::left_join(df1, by = c("doi")) %>%
dplyr::mutate(journal = ifelse(is.na(journal.x), journal.y, journal.x)) %>%
dplyr::select(-c(journal.x, journal.y)) %>%
dplyr::select(-c(contains('.y')))
names(doi_refs) <- sub('.x', '', names(doi_refs))
#lookup publisher
doi_refs <- doi_refs %>%
dplyr::left_join(df1, by = c("doi")) %>%
dplyr::mutate(publisher = ifelse(is.na(publisher.x), publisher.y, publisher.x)) %>%
dplyr::select(-c(publisher.x, publisher.y)) %>%
dplyr::select(-c(contains('.y')))
names(doi_refs) <- sub('.x', '', names(doi_refs))
#lookup volume
doi_refs <- doi_refs %>%
dplyr::left_join(df1, by = c("doi")) %>%
dplyr::mutate(volume = ifelse(is.na(volume.x), volume.y, volume.x)) %>%
dplyr::select(-c(volume.x, volume.y)) %>%
dplyr::select(-c(contains('.y')))
names(doi_refs) <- sub('.x', '', names(doi_refs))
#lookup issue
doi_refs <- doi_refs %>%
dplyr::left_join(df1, by = c("doi")) %>%
dplyr::mutate(issue = ifelse(is.na(issue.x), issue.y, issue.x)) %>%
dplyr::select(-c(issue.x, issue.y)) %>%
dplyr::select(-c(contains('.y')))
names(doi_refs) <- sub('.x', '', names(doi_refs))
#lookup start_page
doi_refs <- doi_refs %>%
dplyr::left_join(df1, by = c("doi")) %>%
dplyr::mutate(start_page = ifelse(is.na(start_page.x), start_page.y, start_page.x)) %>%
dplyr::select(-c(start_page.x, start_page.y)) %>%
dplyr::select(-c(contains('.y')))
names(doi_refs) <- sub('.x', '', names(doi_refs))
#lookup end_page
doi_refs <- doi_refs %>%
dplyr::left_join(df1, by = c("doi")) %>%
dplyr::mutate(end_page = ifelse(is.na(end_page.x), end_page.y, end_page.x)) %>%
dplyr::select(-c(end_page.x, end_page.y)) %>%
dplyr::select(-c(contains('.y')))
names(doi_refs) <- sub('.x', '', names(doi_refs))
#lookup url
doi_refs <- doi_refs %>%
dplyr::left_join(df1, by = c("doi")) %>%
dplyr::mutate(url = ifelse(is.na(url.x), url.y, url.x)) %>%
dplyr::select(-c(url.x, url.y)) %>%
dplyr::select(-c(contains('.y')))
names(doi_refs) <- sub('.x', '', names(doi_refs))
#reorder columns
doi_refs <- doi_refs[, c("intID", "source_type", "author", "year", "title", "journal", "volume", "issue", "start_page", "end_page", "abstract", "doi",
"publisher", "url")]
#data frame containing duplicates for selection
duplicate_dois <- doi_refs[duplicated(doi_refs$doi) | duplicated(doi_refs$doi, fromLast = TRUE), ]
}
####End DOI section####
####Title section####
#subset records without doi missing information but with a title
title_refs <- subset(missing_refs, (is.na(doi)==TRUE & is.na(title)==FALSE))
if(nrow(title_refs)==0){
title_refs <- NULL
} else {
####Search Open Alex for titles####
#find missing records with title on Open Alex
#search on remaining titles
title_input <- data.frame(ids = title_refs$title,
type = 'title')
df2 <- data.frame()
for (i in 1:length(title_input$ids)){
query_work <- oaQueryBuild(
identifier = NULL,
entity = "works",
filter=paste0('title.search:', title_input$ids[i]),
search=NULL,
sort="relevance_score:desc",
endpoint = "https://api.openalex.org/"
)
res <- oaApiRequest(
query_url = query_work
)
if(length(unlist(res))==0){
new_row <- data.frame(id='not found', TI=title_input$ids[i])
df2 <- dplyr::bind_rows(df2, new_row)
} else {
df2 <- dplyr::bind_rows(df2, oa2df(res, entity = "works"))
}
}
#rename result dataframe columns to match inputs
names(df2) <- sub('TI', 'title', names(df2))
names(df2) <- sub('AB', 'abstract', names(df2))
names(df2) <- sub('SO', 'journal', names(df2))
names(df2) <- sub('PU', 'publisher', names(df2))
names(df2) <- sub('PY', 'year', names(df2))
names(df2) <- sub('DI', 'doi', names(df2))
names(df2) <- sub('DT', 'source_type', names(df2))
names(df2) <- sub('volume', 'volume', names(df2))
names(df2) <- sub('issue', 'issue', names(df2))
names(df2) <- sub('first_page', 'start_page', names(df2))
names(df2) <- sub('last_page', 'end_page', names(df2))
names(df2) <- sub('URL', 'url', names(df2))
#if nothing found, move on
if(identical(sum(df2 == 'not found'), nrow(df2)) == TRUE){
title_refs <- NULL
} else {
#remove df$doi URL stem
df2$doi <- gsub('https://doi.org/', '', df2$doi)
#remove irrelevant columns from df2 results
df2 <- dplyr::select(df2, c(author, year, title, journal, volume, issue, start_page, end_page, publisher, doi, abstract, source_type, url))
#remove compltete duplicates
df2 <- df2[!duplicated(df2), ]
#collapse authors list
new_author <- list()
for (i in 1:length(df2$author)) {
new_author <- unlist(c(new_author, paste0(df2$author[[i]]$au_name, collapse = '; ')))
}
df2$author <- new_author
#replace empty abstracts with NA to avoid replacing in the output
df2[df2==""]=NA
####End Search Open Alex for titles####
####lookup and replace based on titles####
#lookup missing information
#lookup authors
title_refs <- title_refs %>%
dplyr::left_join(df2, by = c("title")) %>%
dplyr::mutate(author = ifelse(is.na(author.x), author.y, author.x)) %>%
dplyr::select(-c(author.x, author.y)) %>%
dplyr::select(-c(contains('.y')))
names(title_refs) <- sub('.x', '', names(title_refs))
title_refs <- title_refs[!duplicated(title_refs), ]
#lookup doi
title_refs <- title_refs %>%
dplyr::left_join(df2, by = c("title")) %>%
dplyr::mutate(doi = ifelse(is.na(doi.x), doi.y, doi.x)) %>%
dplyr::select(-c(doi.x, doi.y)) %>%
dplyr::select(-c(contains('.y')))
names(title_refs) <- sub('.x', '', names(title_refs))
title_refs <- title_refs[!duplicated(title_refs), ]
#lookup abstract
title_refs <- title_refs %>%
dplyr::left_join(df2, by = c("title")) %>%
dplyr::mutate(abstract = ifelse(is.na(abstract.x), abstract.y, abstract.x)) %>%
dplyr::select(-c(abstract.x, abstract.y)) %>%
dplyr::select(-c(contains('.y')))
names(title_refs) <- sub('.x', '', names(title_refs))
title_refs <- title_refs[!duplicated(title_refs), ]
#lookup journal
title_refs <- title_refs %>%
dplyr::left_join(df2, by = c("title")) %>%
dplyr::mutate(journal = ifelse(is.na(journal.x), journal.y, journal.x)) %>%
dplyr::select(-c(journal.x, journal.y)) %>%
dplyr::select(-c(contains('.y')))
names(title_refs) <- sub('.x', '', names(title_refs))
title_refs <- title_refs[!duplicated(title_refs), ]
#lookup publisher
title_refs <- title_refs %>%
dplyr::left_join(df2, by = c("title")) %>%
dplyr::mutate(publisher = ifelse(is.na(publisher.x), publisher.y, publisher.x)) %>%
dplyr::select(-c(publisher.x, publisher.y)) %>%
dplyr::select(-c(contains('.y')))
names(title_refs) <- sub('.x', '', names(title_refs))
title_refs <- title_refs[!duplicated(title_refs), ]
#lookup volume
title_refs <- title_refs %>%
dplyr::left_join(df2, by = c("title")) %>%
dplyr::mutate(volume = ifelse(is.na(volume.x), volume.y, volume.x)) %>%
dplyr::select(-c(volume.x, volume.y)) %>%
dplyr::select(-c(contains('.y')))
names(title_refs) <- sub('.x', '', names(title_refs))
title_refs <- title_refs[!duplicated(title_refs), ]
#lookup issue
title_refs <- title_refs %>%
dplyr::left_join(df2, by = c("title")) %>%
dplyr::mutate(issue = ifelse(is.na(issue.x), issue.y, issue.x)) %>%
dplyr::select(-c(issue.x, issue.y)) %>%
dplyr::select(-c(contains('.y')))
names(title_refs) <- sub('.x', '', names(title_refs))
title_refs <- title_refs[!duplicated(title_refs), ]
#lookup start_page
title_refs <- title_refs %>%
dplyr::left_join(df2, by = c("title")) %>%
dplyr::mutate(start_page = ifelse(is.na(start_page.x), start_page.y, start_page.x)) %>%
dplyr::select(-c(start_page.x, start_page.y)) %>%
dplyr::select(-c(contains('.y')))
names(title_refs) <- sub('.x', '', names(title_refs))
title_refs <- title_refs[!duplicated(title_refs), ]
#lookup end_page
title_refs <- title_refs %>%
dplyr::left_join(df2, by = c("title")) %>%
dplyr::mutate(end_page = ifelse(is.na(end_page.x), end_page.y, end_page.x)) %>%
dplyr::select(-c(end_page.x, end_page.y)) %>%
dplyr::select(-c(contains('.y')))
names(title_refs) <- sub('.x', '', names(title_refs))
#lookup url
title_refs <- title_refs %>%
dplyr::left_join(df2, by = c("title")) %>%
dplyr::mutate(url = ifelse(is.na(url.x), url.y, url.x)) %>%
dplyr::select(-c(url.x, url.y)) %>%
dplyr::select(-c(contains('.y')))
names(title_refs) <- sub('.x', '', names(title_refs))
#remove duplicates
title_refs <- title_refs[!duplicated(title_refs), ]
#reorder columns
title_refs <- title_refs[, c("intID", "source_type", "author", "year", "title", "journal", "volume", "issue", "start_page", "end_page", "abstract", "doi",
"publisher", "url")]
#coalesce partial duplicated columns, merging rows sharing partial data
title_refs <- title_refs %>%
dplyr::group_by(intID) %>%
dplyr::summarise_all(coalesce_by_column)
#data frame containing duplicates for selection
duplicate_titles <- title_refs[duplicated(title_refs$title) | duplicated(title_refs$title, fromLast = TRUE), ]
}
####End title section####
}
#bind doi lookup and title lookup table with original values not missing information
result <- dplyr::bind_rows(non_missing, doi_refs, title_refs)
#merge in original columns to supplement returns from OpenAlex
result$intID <- as.numeric(result$intID)
#the folllowing doens't work - it's merging incorrectly
intermediate <- result %>%
dplyr::left_join(orig_refs, by = c("intID")) %>%
dplyr::select(-c(contains('.y')))
names(intermediate) <- sub('.x', '', names(intermediate))
#bind intermediate output with original references
intermediate <- bind_rows(intermediate, orig_refs)
#coalesce to gap-fill from original references where there is a missing value in the intermediate output
output <- intermediate %>%
dplyr::group_by(intID) %>%
dplyr::summarise_all(coalesce_by_column)
View(output)
View(refs)
runApp('inst/shiny-examples/bibfix')
runApp('inst/shiny-examples/bibfix')
runApp('inst/shiny-examples/bibfix')
runApp('inst/shiny-examples/bibfix')
runApp('inst/shiny-examples/bibfix')
runApp('inst/shiny-examples/bibfix')
runApp('inst/shiny-examples/bibfix')
file <- file.choose()
refs <- synthesisr::read_refs(file)
View(refs)
shiny::runApp('inst/shiny-examples/bibfix')
runApp('inst/shiny-examples/bibfix')
runApp('inst/shiny-examples/bibfix')
runApp('inst/shiny-examples/bibfix')
runApp('inst/shiny-examples/bibfix')
setwd("~/OneDrive - SEI/ESHackathon/4.Remote 2020/bibfix/inst/shiny-examples/bibfix")
rsconnect::deployApp()
runApp()
runApp()
runApp()
runApp()
runApp()
rsconnect::deployApp()
token = 'o7kaHxldVwbQxgo32RDfKGbG8g0rivnqFDxpQyx6NAzGKsavm2lN'
input <- data.frame(ids = c('10.1371/journal.pone.0138237', '10.1186/s13750-016-0059-6', 'The role of tourism and recreation in the spread of non-native species: a systematic review and meta-analysis'),
type = c('doi', 'doi', 'title'))
source('functions.R')
source('mixed_id_wrapper.R')
setwd("~/OneDrive - SEI/ESHackathon/4.Remote 2020/bibfix/inst/shiny-examples/bibfix")
source('functions.R')
source('mixed_id_wrapper.R')
result <- get_refs_mixed(input,
search = 'input',
token = 'o7kaHxldVwbQxgo32RDfKGbG8g0rivnqFDxpQyx6NAzGKsavm2lN')
library(data.table)
result <- get_refs_mixed(input,
search = 'input',
token = 'o7kaHxldVwbQxgo32RDfKGbG8g0rivnqFDxpQyx6NAzGKsavm2lN')
View(result)
result[["df"]]
x <- result[["df"]]
View(x)