-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathEnsemble.py
145 lines (119 loc) · 5.52 KB
/
Ensemble.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
# -*- coding: utf-8 -*-
"""
@author: Nehal
"""
# Bagged Decision Trees for Classification
from sklearn import model_selection
from sklearn.linear_model import LogisticRegression
from sklearn.naive_bayes import GaussianNB
from sklearn.ensemble import BaggingClassifier, RandomForestClassifier, ExtraTreesClassifier, AdaBoostClassifier, GradientBoostingClassifier, VotingClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import roc_curve, accuracy_score, confusion_matrix, classification_report
import matplotlib.pyplot as plt
import pandas as pd
from scipy import stats
def BaggingClassif(X_train,y_train,X_test):
seed = 7
kfold = model_selection.KFold(n_splits=10, random_state=seed)
classif = DecisionTreeClassifier()
num_trees = 50
model = BaggingClassifier(base_estimator=classif, n_estimators=num_trees, random_state=seed)
scores = model_selection.cross_val_score(model, X_train, y_train, cv=kfold)
model = model.fit(X_train,y_train)
y_pred = model.predict(X_test)
return y_pred,scores
def RandomForest(X_train,y_train,X_test):
seed = 7
kfold = model_selection.KFold(n_splits=10, random_state=seed)
num_trees = 50
model = RandomForestClassifier(n_estimators=num_trees, random_state=seed)
scores = model_selection.cross_val_score(model, X_train, y_train, cv=kfold)
model = model.fit(X_train,y_train)
y_pred = model.predict(X_test)
return y_pred,scores
def ExtraTreeClassif(X_train,y_train,X_test):
seed = 7
kfold = model_selection.KFold(n_splits=10, random_state=seed)
num_trees = 50
model = ExtraTreesClassifier(n_estimators=num_trees, random_state=seed)
scores = model_selection.cross_val_score(model, X_train, y_train, cv=kfold)
model = model.fit(X_train,y_train)
y_pred = model.predict(X_test)
return y_pred,scores
def AdaBoost(X_train,y_train,X_test):
seed = 7
kfold = model_selection.KFold(n_splits=10, random_state=seed)
model = AdaBoostClassifier(n_estimators=100, random_state=seed)
scores = model_selection.cross_val_score(model, X_train, y_train, cv=kfold)
model = model.fit(X_train,y_train)
y_pred = model.predict(X_test)
return y_pred,scores
def GradientTreeBoost(X_train,y_train,X_test):
seed = 7
kfold = model_selection.KFold(n_splits=10, random_state=seed)
model = GradientBoostingClassifier(n_estimators=100, learning_rate=1.0, max_depth=1,random_state=seed)
scores = model_selection.cross_val_score(model, X_train, y_train, cv=kfold)
model = model.fit(X_train,y_train)
y_pred = model.predict(X_test)
return y_pred,scores
def VotingClassif(X_train,y_train,X_test):
clf1 = LogisticRegression(solver='lbfgs', multi_class='multinomial',
random_state=1)
clf2 = RandomForestClassifier(n_estimators=50, random_state=1)
clf3 = GaussianNB()
model = VotingClassifier(estimators=[('lr', clf1), ('rf', clf2), ('gnb', clf3)],voting='soft')
scores = model_selection.cross_val_score(model, X_train, y_train, cv=10)
model = model.fit(X_train, y_train)
y_pred = model.predict(X_test)
return y_pred,scores
def EnsembleModels(X_train,y_train,X_test, y_test):
print("Result using Bagging Classification:\n")
y_bag, scores_bag = BaggingClassif(X_train,y_train,X_test)
printReport(y_test,y_bag)
print("Result using Random Forest Classification:\n")
y_rf, scores_rf = RandomForest(X_train,y_train,X_test)
printReport(y_test,y_rf)
print("Result using Extra Tree Classification:\n")
y_et, scores_et = ExtraTreeClassif(X_train,y_train,X_test)
printReport(y_test,y_et)
print("Result using AdaBoost Classification:\n")
y_ab, scores_ab = AdaBoost(X_train,y_train,X_test)
printReport(y_test,y_ab)
print("Result using Gradient Tree Boosting Classification:\n")
y_gtb, scores_gtb = GradientTreeBoost(X_train,y_train,X_test)
printReport(y_test,y_gtb)
print("Result using Voting Classification:\n")
y_vc, scores_vc = VotingClassif(X_train,y_train,X_test)
printReport(y_test,y_vc)
data2 = {'Bagging':scores_bag,'Random Forest':scores_rf, 'Extra Tree':scores_et, 'AdaBoost':scores_ab,'GradientBoost':scores_gtb,'Voting':scores_vc}
df2 = pd.DataFrame(data=data2)
paired_t_test(df2)
print(df2)
return
def paired_t_test(df2):
for x in range(0,len(df2.columns)):
for y in range(x+1,len(df2.columns)):
col1 = df2.columns[x]
col2 = df2.columns[y]
before = df2[col1]
after = df2[col2]
print(col1,"-",col2)
print(stats.ttest_rel(a=before.values,b=after.values))
print("")
def printReport(y_test,y_predict):
#finding the accuracy of results
acc = accuracy_score(y_test, y_predict)
print("Accuracy comes out to be: ",acc)
#calculating precision and recall
print(classification_report(y_test,y_predict))
#creating confusion matrix
print("Confusion Matrix for the Classification result:")
print(pd.DataFrame(
confusion_matrix(y_test, y_predict),
columns =['Predicted Pedestrian Safe','Predicted Pedestrian Affected'],
index=['True Pedestrian Safe','True Pedestrian Affected']))
fpr, tpr , thresholds = roc_curve(y_test, y_predict, pos_label=1)
plt.plot([0, 1],[0, 1], linestyle='--')
plt.plot(fpr, tpr, marker='o')
plt.show()
return