-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbatchkmeans.py
58 lines (49 loc) · 2.07 KB
/
batchkmeans.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
#Written by Metehan Ozten
# use cmdline arg '-i' to specify input file
# use cmdline arg '-v' to turn on verbose printing
import matplotlib.pyplot as plt
import numpy
import sys
from sklearn.cluster import MiniBatchKMeans, KMeans
def print_centroids(clusters):
print('Data Columns: public_favorites_count|followings_count|followers_count|likes_count|track_count|playlist_count|comments_count')
for x in range(0, clusters.shape[0]):
print('Centroid %d: %s' % (x, str(clusters[x])))
def print_data_with_labels(data, analysis_data, labels, spammy_ids, num_clusters):
k = [0 for x in range(0, num_clusters)]
for i in range(0, data.shape[0]):
if int(analysis_data[i][0]) not in spammy_ids:
print('user_id: %d id: %d %s label: %d' % (analysis_data[i][0], analysis_data[i][1], str(data[i]), labels[i]))
else:
print('spammer_user_id: %d id: %d %s label: %d' % (analysis_data[i][0], analysis_data[i][1], str(data[i]), labels[i]))
k[labels[i]] += 1
print(k)
return k
def read_spam_ids(filename = 'spam_only_ids.csv'):
spammy_ids = {}
with open(filename, 'r') as f:
for line in f:
num = int(line)
spammy_ids[num] = True
return spammy_ids
def main():
use_cols = (2,3,4,5,6,7,8)
if '-i' not in sys.argv:
analysis_data = numpy.loadtxt('features.txt', skiprows = 1, delimiter = ',')
data = numpy.loadtxt('features.txt', skiprows = 1, usecols = use_cols, delimiter = ',')
else :
analysis_data = numpy.loadtxt(sys.argv[sys.argv.index('-i')+1], skiprows = 1, delimiter = ',')
data = numpy.loadtxt(sys.argv[sys.argv.index('-i')+1], skiprows = 1, usecols = use_cols, delimiter = ',')
num_clusters = 4 #default
if '-n' in sys.argv:
num_clusters = int(sys.argv[sys.argv.index('-n')+1])
our_model = MiniBatchKMeans(n_clusters = num_clusters, batch_size = 2000)
labels = our_model.fit_predict(data)
clusters = our_model.cluster_centers_
spammy_ids = read_spam_ids()
title = "number of clusters: %d" % (len(clusters))
print_centroids(clusters)
if '-v' in sys.argv:
print_data_with_labels(data, analysis_data, labels, spammy_ids, num_clusters)
if __name__ == '__main__':
main()