-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset_statistics.py
56 lines (45 loc) · 1.77 KB
/
dataset_statistics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import argparse
import json
import multiprocessing
import pathlib
import sys
import torch
import torch.utils.data
from pytorch_template.ingestion import IngestDataset
from pytorch_template.ingestion import ToTensor
def compute_statistics(root_dir: str) -> None:
# TODO: update transform
dataset = IngestDataset(root_dir=root_dir, split='train', transform=ToTensor())
loader = torch.utils.data.DataLoader(
dataset, batch_size=20, num_workers=multiprocessing.cpu_count()
)
n = 0
channels = dataset[0]['features'].size(-1)
mean = torch.zeros(channels, dtype=torch.float32)
m2 = torch.zeros(channels, dtype=torch.float32)
for sample in loader:
features = sample['features']
# Here mean and standard deviation are computed via Chan et. al. algorithm
# (see https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance)
count = features.size(0)
avg = features.mean(dim=0)
var = features.var(dim=0)
delta = avg - mean
mean = (mean * n + features.sum(dim=0)) / (n + count)
m2 += var * (count - 1) + delta.pow(2) * n * count / (n + count)
n += count
std = torch.sqrt(m2 / (n - 1))
statistics = {'mean': mean.tolist(), 'std': std.tolist()}
print(statistics)
with open(pathlib.Path(root_dir) / 'statistics.json', 'w') as f:
json.dump(statistics, f, indent=4)
if __name__ == '__main__':
parser = argparse.ArgumentParser(
description='Collect the mean and standard deviation for input data',
usage='python3.7 dataset_statistics.py root-dir',
)
parser.add_argument(
'root_dir', metavar='root-dir', type=str, help='Path to data root directory.'
)
args = parser.parse_args(sys.argv[1:])
compute_statistics(args.root_dir)