-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathsimulation.py
169 lines (132 loc) · 5.33 KB
/
simulation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
#!/usr/bin/python3
# Semi-phisically-based hydraulic erosion simulation. Code is inspired by the
# code found here:
# http://ranmantaru.com/blog/2011/10/08/water-erosion-on-heightmap-terrain/
# With some theoretical inspiration from here:
# https://hal.inria.fr/inria-00402079/document
import numpy as np
import scipy as sp
import matplotlib.pyplot as plt
import os
import sys
import util
from PIL import Image
import make_grayscale_image
# Smooths out slopes of `terrain` that are too steep. Rough approximation of the
# phenomenon described here: https://en.wikipedia.org/wiki/Angle_of_repose
def apply_slippage(terrain, repose_slope, cell_width):
delta = util.simple_gradient(terrain) / cell_width
smoothed = util.gaussian_blur(terrain, sigma=1.5)
should_smooth = np.abs(delta) > repose_slope
result = np.select([np.abs(delta) > repose_slope], [smoothed], terrain)
return result
def simulate(img_in,iter_in,path_out,path_argv):
#add img input
imginput = img_in
iterInput = iter_in
img = Image.open(imginput).convert('L')
img_as_np = np.asarray(img)
# Grid dimension constants
full_width = 200
dim = img_as_np[0].size
shape = [dim] * 2
cell_width = full_width / dim
cell_area = cell_width ** 2
# Snapshotting parameters. Only needed for generating the simulation
# timelapse.
enable_snapshotting = False
my_dir = os.path.dirname(path_argv)
snapshot_dir = os.path.join(my_dir, 'sim_snaps')
snapshot_file_template = 'sim-%05d.png'
if enable_snapshotting:
try: os.mkdir(snapshot_dir)
except: pass
# Water-related constants
rain_rate = 0.0008 * cell_area
evaporation_rate = 0.0005
# Slope constants
min_height_delta = 0.05
repose_slope = 0.03
gravity = 30.0
gradient_sigma = 0.5
# Sediment constants
sediment_capacity_constant = 50.0
dissolving_rate = 0.25
deposition_rate = 0.001
# The numer of iterations is proportional to the grid dimension. This is to
# allow changes on one side of the grid to affect the other side.
iterations = iterInput
# `terrain` represents the actual terrain height we're interested
# img input remap
terrain = np.true_divide(img_as_np, 255)
# `sediment` is the amount of suspended "dirt" in the water. Terrain will be
# transfered to/from sediment depending on a number of different factors.
sediment = np.zeros_like(terrain)
# The amount of water. Responsible for carrying sediment.
water = np.zeros_like(terrain)
# The water velocity.
velocity = np.zeros_like(terrain)
for i in range(0, iterations):
print('%d / %d' % (i + 1, iterations))
#percent_iter = i/iterInput*100
#if percent_iter >
# Add precipitation. This is done by via simple uniform random distribution,
# although other models use a raindrop model
water += np.random.rand(*shape) * rain_rate
# Compute the normalized gradient of the terrain height to determine where
# water and sediment will be moving.
gradient = np.zeros_like(terrain, dtype='complex')
gradient = util.simple_gradient(terrain)
gradient = np.select([np.abs(gradient) < 1e-10],
[np.exp(2j * np.pi * np.random.rand(*shape))],
gradient)
gradient /= np.abs(gradient)
# Compute the difference between teh current height the height offset by
# `gradient`.
neighbor_height = util.sample(terrain, -gradient)
height_delta = terrain - neighbor_height
# The sediment capacity represents how much sediment can be suspended in
# water. If the sediment exceeds the quantity, then it is deposited,
# otherwise terrain is eroded.
sediment_capacity = (
(np.maximum(height_delta, min_height_delta) / cell_width) * velocity *
water * sediment_capacity_constant)
deposited_sediment = np.select(
[
height_delta < 0,
sediment > sediment_capacity,
], [
np.minimum(height_delta, sediment),
deposition_rate * (sediment - sediment_capacity),
],
# If sediment <= sediment_capacity
dissolving_rate * (sediment - sediment_capacity))
# Don't erode more sediment than the current terrain height.
deposited_sediment = np.maximum(-height_delta, deposited_sediment)
# Update terrain and sediment quantities.
sediment -= deposited_sediment
terrain += deposited_sediment
sediment = util.displace(sediment, gradient)
water = util.displace(water, gradient)
# Smooth out steep slopes.
terrain = apply_slippage(terrain, repose_slope, cell_width)
# Update velocity
velocity = gravity * height_delta / cell_width
# Apply evaporation
water *= 1 - evaporation_rate
# Snapshot, if applicable.
if enable_snapshotting:
output_path = os.path.join(snapshot_dir, snapshot_file_template % i)
util.save_as_png(terrain, output_path)
#np.save('simulation', util.normalize(terrain))
file_not_present_sim = False
count = 0
output_path_sim = None
while (file_not_present_sim == False):
output_path_sim = os.path.join(path_out, 'simulation'+str(count)+'.npy')
if (os.path.isfile(output_path_sim) == False):
file_not_present_sim = True
count += 1
np.save(output_path_sim, util.normalize(terrain))
#np.save(os.path.join(path_out, 'simulation'), util.normalize(terrain))
make_grayscale_image.conv_grayscale(output_path_sim,path_out)