-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtmanual_standalone.py
975 lines (828 loc) · 42.7 KB
/
tmanual_standalone.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
"""
Standalone program, just combine all image.py, gui.py, measurement.py, and postanalysis.py
"""
import os
import pickle
import cv2
import copy
import numpy as np
import glob
import re
import csv
import math
from keyboard import press
import pyautogui as pag
from tqdm import tqdm
import PySimpleGUI as sg
v_col = [[37, 231, 253], [98, 201, 94], [140, 145, 33], [139, 82, 59], [84, 1, 68]] # viridis colors in BGR
note_pos = [40, 100]
note_pos2 = [40, 200]
note_pos3 = [40, 300]
def tunnel_draw(img_t, current_tunnel_t, col_t, object_size, end_node_draw=True):
l_t = len(current_tunnel_t)
if l_t > 0:
for t_seg_iter in range(l_t-1):
cv2.line(img_t, current_tunnel_t[t_seg_iter], current_tunnel_t[t_seg_iter+1], col_t, object_size)
cv2.circle(img_t, current_tunnel_t[0], object_size, v_col[0], -1)
if l_t > 1 and end_node_draw:
cv2.circle(img_t, current_tunnel_t[l_t-1], object_size, v_col[0], round(object_size/2))
return img_t
def outlined_text(img_o, text_o, ref_o, col_o, font_size):
cv2.putText(img_o, text_o, ref_o, cv2.FONT_HERSHEY_PLAIN, font_size, (0, 0, 0), font_size*5, cv2.LINE_AA)
cv2.putText(img_o, text_o, ref_o, cv2.FONT_HERSHEY_PLAIN, font_size, col_o, font_size, cv2.LINE_AA)
return img_o
def object_drawing(img_d, ref_d=None, scale_d=None, tunnel_d=None, offset=0,
col_t=None, object_size = 5, font_size = 2, draw_number = True, end_node_draw=True):
if ref_d is not None:
cv2.circle(img_d, ref_d, object_size*5, v_col[0], 5)
cv2.circle(img_d, ref_d, object_size, (0, 0, 0), -1)
if col_t is None:
col_t = [0, 0, 0]
if scale_d is not None:
cv2.line(img_d, scale_d[0], scale_d[1], (0, 0, 255), object_size)
if tunnel_d is not None:
for tt in range(len(tunnel_d)):
img_d = tunnel_draw(img_d, tunnel_d[tt], col_t, object_size, end_node_draw)
if draw_number:
img_d = outlined_text(img_d, str(tt+offset), tunnel_d[tt][0]-np.array([object_size, 0]), v_col[0], font_size)
return img_d
def image_format(img): # all images are reformatted in 2000xH for measurement
h, w = img.shape[:2]
if w < h:
img = cv2.rotate(img, cv2.ROTATE_90_COUNTERCLOCKWISE)
img = cv2.resize(img, dsize=(2000, round(h*2000/w)))
return img
class ImgData:
def __init__(self, img_name, data_values=None, file_extension=None):
if data_values is None:
self.name = img_name
img_name = re.sub("."+file_extension, "", img_name)
self.id = img_name.split('_')[0]
if len(img_name.split("_")) > 1:
self.serial = int(img_name.split('_')[1])
else:
self.serial = 0
data_values = [self.name, self.id, self.serial, np.array([0, 0]), [], [[0, 0], [0, 0]], 0]
self.name = data_values[0]
self.id = data_values[1]
self.serial = data_values[2]
self.ref_xy = data_values[3]
self.tunnel = data_values[4]
self.scale_xy = data_values[5]
self.analyze_flag = data_values[6]
def output_image_data(self):
return [self.name, self.id, self.serial, self.ref_xy, self.tunnel, self.scale_xy, self.analyze_flag]
def note_plot(self, img, note_message, font_size):
cv2.putText(img, note_message+'('+self.name+')',
note_pos, cv2.FONT_HERSHEY_SIMPLEX, font_size, (0, 0, 255), font_size, cv2.LINE_AA)
return img
def object_plot(self, img, offset, col_t, object_size, font_size, draw_number, end_node_draw=True):
img = object_drawing(img, self.ref_xy, self.scale_xy, self.tunnel, offset, col_t, object_size, font_size, draw_number, end_node_draw)
return img
def change_ref(self, ref_xy_new):
self.scale_xy[0] = self.scale_xy[0] - self.ref_xy + ref_xy_new
self.scale_xy[1] = self.scale_xy[1] - self.ref_xy + ref_xy_new
for tt in range(len(self.tunnel)):
self.tunnel[tt] = self.tunnel[tt] - self.ref_xy + ref_xy_new
self.ref_xy = ref_xy_new
def measure_tunnel_length(self, scale_object_length):
self.scale_xy[0] = np.array(self.scale_xy[0])
self.scale_xy[1] = np.array(self.scale_xy[1])
scale = math.sqrt(sum((self.scale_xy[1]-self.scale_xy[0])**2))
if len(self.tunnel) > 0 and scale == 0:
scale = 1
print("Caution! Length of scale object is 0. Use 1 instead. Otherwise, recheck the image:", self.name)
tunnel_len = []
for tt in range(len(self.tunnel)):
tl = 0
for ttt in range(len(self.tunnel[tt])-1):
tl = tl+math.sqrt(sum((self.tunnel[tt][ttt+1]-self.tunnel[tt][ttt])**2))
tunnel_len.append(tl/scale*scale_object_length)
return tunnel_len, scale
def obtain_nodes(self):
start_node, end_node = [], []
for tt in range(len(self.tunnel)):
start_node.append(self.tunnel[tt][0])
end_node.append(self.tunnel[tt][len(self.tunnel[tt])-1])
return start_node, end_node
def image_output(self, img, out_dir, object_size, font_size, text_drawing):
cv2.putText(img, self.id+"_"+str(self.serial), note_pos,
cv2.FONT_HERSHEY_SIMPLEX, font_size, (255, 0, 0), font_size, cv2.LINE_AA)
if len(self.tunnel) < 1:
cv2.putText(img, "no tunnel", note_pos2,
cv2.FONT_HERSHEY_SIMPLEX, font_size, (255, 0, 0), font_size, cv2.LINE_AA)
if text_drawing:
img = object_drawing(img, self.ref_xy, self.scale_xy, self.tunnel, 0, v_col[4], object_size, font_size, draw_number=text_drawing)
cv2.imwrite(out_dir+"/" + self.name, img)
else:
img = object_drawing(img, self.ref_xy, self.scale_xy, self.tunnel, 0, v_col[4], object_size, font_size, draw_number=text_drawing)
cv2.imwrite(out_dir+"/wotext_" + self.name, img)
img = object_drawing(img, self.ref_xy, self.scale_xy, self.tunnel, 0, v_col[4], object_size, font_size, draw_number=True)
cv2.imwrite(out_dir+"/" + self.name, img)
def colored_image_output(self, img, tunnel_sequence, out_dir, object_size, font_size, text_drawing):
cv2.putText(img, self.id+"_"+str(self.serial), note_pos,
cv2.FONT_HERSHEY_SIMPLEX, font_size, (255, 0, 0), font_size, cv2.LINE_AA)
if len(self.tunnel) < 1:
cv2.putText(img, "no tunnel", note_pos2,
cv2.FONT_HERSHEY_SIMPLEX, font_size, (0, 0, 255), font_size, cv2.LINE_AA)
for tt in range(len(self.tunnel)):
img = tunnel_draw(img, self.tunnel[tt], v_col[5-tunnel_sequence[tt]], object_size)
if not text_drawing:
cv2.imwrite(out_dir+"colored_wotext_"+self.name, img)
for tt in range(len(self.tunnel)):
img = outlined_text(img, str(tt), self.tunnel[tt][0]-np.array([object_size, 0]), v_col[5-tunnel_sequence[tt]], font_size)
cv2.imwrite(out_dir+"colored_"+self.name, img)
def analyze_done(self):
self.analyze_flag = 1
def zoom_func(img_z, mouse_xy, img_shape, zoom):
mouse_xy[0] = max(mouse_xy[0], img_shape[0] / 4)
mouse_xy[1] = max(mouse_xy[1], img_shape[1] / 4)
mouse_xy[0] = min(mouse_xy[0], img_shape[0] * 3 / 4)
mouse_xy[1] = min(mouse_xy[1], img_shape[1] * 3 / 4)
img_zoom = cv2.resize(img_z, dsize=(img_shape * 2))
img_zoom = img_zoom[int(mouse_xy[1] * 2 - img_shape[1] / 2):int(mouse_xy[1] * 2 + img_shape[1] / 2),
int(mouse_xy[0] * 2 - img_shape[0] / 2):int(mouse_xy[0] * 2 + img_shape[0] / 2)]
zoom_xy = mouse_xy * 2 - img_shape / 2
zoom_xy = zoom_xy.astype(int)
return img_zoom, zoom_xy, zoom*2
def output_measurement(img_data, img, tmanual_output, out_dir, object_size, font_size, text_drawing):
img_data.analyze_done()
# delete old data
duplicate_data_index = list(
set([i for i, x in enumerate(tmanual_output[1]) if x == img_data.serial]) &
set([i for i, x in enumerate(tmanual_output[0]) if x == img_data.id])
)
if len(duplicate_data_index) > 0:
print("delete duplicate data")
tmanual_output[0].pop(duplicate_data_index[0])
tmanual_output[1].pop(duplicate_data_index[0])
tmanual_output[2].pop(duplicate_data_index[0])
# add new data
tmanual_output[0].append(img_data.id)
tmanual_output[1].append(img_data.serial)
tmanual_output[2].append(img_data.output_image_data())
img_data.image_output(img, out_dir, object_size, font_size, text_drawing)
# write
with open(out_dir + '/res.pickle', mode='wb') as f:
pickle.dump(tmanual_output, f)
return tmanual_output
def measurement(in_dir, in_files, out_dir, skip_analyzed, file_extension, object_size, font_size, text_drawing):
# Data read
if os.path.exists(out_dir + "/res.pickle"):
print("existing analysis loaded")
with open(out_dir+ os.sep + 'res.pickle', mode='rb') as f:
tmanual_output = pickle.load(f)
# --- todo this part will be removed future
# remove node object from old version tmanual res.pickle
if len(tmanual_output[2][0]) > 7:
for ii in range(len(tmanual_output[0])):
tmanual_output[2][ii].pop(5)
with open(out_dir + os.sep + 'res.pickle', mode='wb') as f:
pickle.dump(tmanual_output, f)
# ----------
else:
print("new analysis start")
tmanual_output = [[], [], []] # store Ids, Serial, Results
if in_files == 0:
name1 = glob.glob(in_dir + os.sep + '*.' + file_extension)
else:
name1 = in_files.split(';')
num_file = len(name1)
# Analysis
ii = 0
while ii < num_file:
# region --- Load image (or skip) ---#
i = name1[ii]
img_name = re.sub("."+file_extension, "", os.path.basename(i))
try:
int(img_name.split('_')[1])
except:
return("Error. Invalid filename: " + os.path.basename(i))
img_data = ImgData(os.path.basename(i), None, file_extension)
print(str(ii) + ": " + img_data.name)
cur_data, pre_data = [], []
cur_data_index = list(
set([i for i, x in enumerate(tmanual_output[1]) if x == img_data.serial]) &
set([i for i, x in enumerate(tmanual_output[0]) if x == img_data.id])
)
pre_data_index = list(
set([i for i, x in enumerate(tmanual_output[1]) if x < img_data.serial]) &
set([i for i, x in enumerate(tmanual_output[0]) if x == img_data.id])
)
if len(cur_data_index) > 0:
cur_data = copy.deepcopy(tmanual_output[2][cur_data_index[0]])
img_data = ImgData(None, cur_data)
if len(pre_data_index) > 0:
close_pre_data_index = pre_data_index[0]
for p_ii in pre_data_index:
if tmanual_output[1][close_pre_data_index] < tmanual_output[1][p_ii]:
close_pre_data_index = p_ii
pre_data = copy.deepcopy(tmanual_output[2][close_pre_data_index])
# skip analyzed video
if img_data.analyze_flag > 0:
if skip_analyzed == "true":
ii = ii + 1
continue
img_read = cv2.imread(i)
if img_read is None:
print("Error. file is not readable: " + os.path.basename(i) + ". Skip.")
ii = ii + 1
continue
#img_read = image_format(img_read)
img_shape = np.array([img_read.shape[1], img_read.shape[0]])
# create window
window_name = "window"
cv2.namedWindow(window_name, cv2.WINDOW_NORMAL)
scr_w, scr_h = pag.size()
if scr_h > scr_w * img_shape[1] / img_shape[0]:
cv2.resizeWindow(window_name, scr_w, int(scr_w * img_shape[1] / img_shape[0]))
else:
cv2.resizeWindow(window_name, int(scr_h * img_shape[0] / img_shape[1]), scr_h)
# endregion ------
# region --- 1. Check if analyze the video ---#
img = img_data.note_plot(img_read.copy(), '1.Check ', font_size)
# if data of current image exist, draw object
if img_data.analyze_flag > 0:
img = img_data.object_plot(img, 0, v_col[4], object_size, font_size, draw_number=True)
# else if data of previous image exist, draw object
elif len(pre_data) > 0:
img_data.ref_xy = pre_data[3]
img_data.tunnel = pre_data[4]
img_data.scale_xy = pre_data[5]
img = img_data.object_plot(img, 0, v_col[4], object_size, font_size, draw_number=True)
cv2.imshow(window_name, img)
def want_to_analyze(event, x, y, flags, param):
if event == cv2.EVENT_LBUTTONDOWN:
press('v')
elif event == cv2.EVENT_RBUTTONDOWN:
press('n')
cv2.setMouseCallback(window_name, want_to_analyze)
k = cv2.waitKey()
if k == ord("b"):
if ii > 0:
ii = ii - 1
skip_analyzed = False
continue
if k == ord("n"):
print("do not analyze. next")
if img_data.analyze_flag == 0:
output_measurement(img_data, img_read.copy(), tmanual_output, out_dir, object_size, font_size, text_drawing)
ii = ii + 1
continue
if k == ord("r"):
# reanalyze, appending to the data of previous image
if len(pre_data) > 0:
img_data.ref_xy = pre_data[3]
img_data.tunnel = pre_data[4]
img_data.scale_xy = pre_data[5]
else:
img_data.tunnel = []
if k == ord("a"):
# reanalyze, from scratch
img_data.tunnel = []
if k == 27:
cv2.destroyAllWindows()
break
# endregion ----------
# region --- 2. Define Ref point --- #
img = img_data.note_plot(img_read.copy(), '2.Ref point ', font_size)
cv2.circle(img, img_data.ref_xy, object_size * 5, v_col[0], object_size)
cv2.circle(img, img_data.ref_xy, object_size, (0, 0, 0), -1)
cv2.imshow('window', img)
def get00(event, x, y, flags, params):
img, img_data = params
if event == cv2.EVENT_LBUTTONDOWN:
img_data.change_ref(np.array([x, y]))
press("enter")
elif event == cv2.EVENT_RBUTTONDOWN:
press("enter")
cv2.setMouseCallback('window', get00, [img, img_data])
cv2.waitKey()
# endregion
# region --- 3. Measure tunnel length --- #
img = img_data.note_plot(img_read.copy(), '3.Measure ', font_size)
# draw previous tunnels
num_old_tunnel = len(img_data.tunnel)
img = img_data.object_plot(img, 0, v_col[2], object_size, font_size, draw_number=False, end_node_draw=False)
img_undo = img.copy()
tunnel_pre = img_data.tunnel
# todo: code for zooming is not great. but I have no idea how to improve yet.
count, end, mouse_xy = 0, 0, np.array([0, 0])
zoom, zoom_xy = [1, 1, 1], [np.array([0, 0]), np.array([0, 0]), np.array([0, 0])] # for x2, x4, x8
img_data.tunnel = []
while True:
cv2.imshow('window', img)
current_tunnel = np.empty((0, 2), int)
if num_old_tunnel > 0 and count < num_old_tunnel:
current_tunnel = copy.copy(tunnel_pre[count])
def tunnel_length(event, x, y, flags, param):
nonlocal img, current_tunnel, end, mouse_xy, zoom, zoom_xy
img = tunnel_draw(img,
((current_tunnel*zoom[0]-zoom_xy[0])*zoom[1]-zoom_xy[1])*zoom[2]-zoom_xy[2],
v_col[1], object_size*zoom[0]*zoom[1]*zoom[2], False)
if event == cv2.EVENT_MOUSEMOVE:
mouse_xy = np.array([x, y])
if event == cv2.EVENT_LBUTTONDOWN:
current_tunnel = np.append(current_tunnel, (((np.array([[x, y]])+zoom_xy[2])/zoom[2]+zoom_xy[1])/zoom[1]+zoom_xy[0])/zoom[0], axis=0)
current_tunnel = current_tunnel.astype(int)
if event == cv2.EVENT_RBUTTONDOWN:
if len(current_tunnel) > 0:
img = object_drawing(img, None, None, [((current_tunnel*zoom[0]-zoom_xy[0])*zoom[1]-zoom_xy[1])*zoom[2]-zoom_xy[2]],
count, v_col[4], object_size*zoom[0]*zoom[1]*zoom[2], font_size*zoom[0]*zoom[1]*zoom[2], draw_number=False)
press('p')
else:
press('f')
cv2.imshow('window', img)
cv2.setMouseCallback('window', tunnel_length)
k = cv2.waitKey(0)
if k == ord("p"):
count = count + 1
img_data.tunnel.append(current_tunnel)
elif k == ord("f"):
break
elif k == ord("z"):
if zoom[1] == 2 and zoom[2] == 1:
img, zoom_xy[2], zoom[2] = zoom_func(img, mouse_xy, img_shape, zoom[2])
elif zoom[0] == 2 and zoom[1] == 1:
img, zoom_xy[1], zoom[1] = zoom_func(img, mouse_xy, img_shape, zoom[1])
elif zoom[0] == 1:
img, zoom_xy[0], zoom[0] = zoom_func(img, mouse_xy, img_shape, zoom[0])
elif k == ord("q"):
if count > 0:
img_data.tunnel.pop(-1)
count = count - 1
if k == ord("x") or k == ord("q"):
# cancel zoom when redo
img = img_undo.copy()
img = object_drawing(img, img_data.ref_xy, None, img_data.tunnel[0:count],
0, v_col[4], object_size, font_size, draw_number=False)
zoom, zoom_xy = [1, 1, 1], [np.array([0, 0]), np.array([0, 0]), np.array([0, 0])]
if k == ord("e"):
if num_old_tunnel > 0 and count < num_old_tunnel:
count_temp = count
for i_count in range(count_temp, num_old_tunnel):
current_tunnel = copy.copy(tunnel_pre[i_count])
img = object_drawing(img, None, None, [((current_tunnel*zoom[0]-zoom_xy[0])*zoom[1]-zoom_xy[1])*zoom[2]-zoom_xy[2]],
count, v_col[4], object_size*zoom[0]*zoom[1]*zoom[2], font_size*zoom[0]*zoom[1]*zoom[2], draw_number=False)
img_data.tunnel.append(current_tunnel)
count = count + 1
if k == 27:
break
if k == 27:
break
# endregion
# region --- 4. Scaling --- #
img = img_data.note_plot(img_read.copy(), '4.Scale ', font_size)
cv2.line(img, img_data.scale_xy[0], img_data.scale_xy[1], (0, 255, 0), object_size)
end, drawing = 0, False
def scale_length(event, x, y, flags, param):
nonlocal drawing, end, img_copy
if event == cv2.EVENT_LBUTTONDOWN:
drawing = True
img_data.scale_xy[0] = np.array([x, y])
elif event == cv2.EVENT_MOUSEMOVE:
if drawing:
img_copy = img.copy()
cv2.line(img_copy, img_data.scale_xy[0], (x, y), (0, 0, 255), 2)
elif event == cv2.EVENT_LBUTTONUP:
img_data.scale_xy[1] = np.array([x, y])
cv2.line(img_copy, img_data.scale_xy[0], img_data.scale_xy[1], (0, 0, 255), 2)
drawing = False
elif event == cv2.EVENT_RBUTTONDOWN:
end = 1
cv2.imshow('window', img_copy)
img_copy = img.copy()
cv2.imshow('window', img_copy)
while True:
cv2.setMouseCallback('window', scale_length)
if cv2.waitKey(1) & end == 1:
break
# endregion
# region----- Output -----#
tmanual_output = output_measurement(img_data, img_read.copy(), tmanual_output, out_dir, object_size, font_size, text_drawing)
ii = ii + 1
# endregion
cv2.destroyAllWindows()
print("Finished. Next to Post-analysis.")
def postanalysis(in_dir, out_dir, scale_object_len, contact_threshold, network_out, output_image, object_size, font_size, text_drawing):
def node_tunnel_distance(node_p, t_seg):
# calculate the distance between line AB and point P
# also obtain the nearest point on a line AB
# using inner product of vector
# ---XXX todo: if the AP and AB is parallel but P is not on AB, this function does not work.
# ---However, I believe that this practically does not happen if manual analysis.
# ---Thus, I leave this as it is. Maybe need to be fixed in the future.
ap = node_p - t_seg[0]
bp = node_p - t_seg[1]
ab = t_seg[1] - t_seg[0]
if np.dot(ab, ap) < 0:
# A is the nearest
nt_distance = norm(ap)
nearest_ab_point = t_seg[0]
elif np.dot(ab, bp) > 0:
# B is the nearest
nt_distance = norm(bp)
nearest_ab_point = t_seg[1]
else:
# first obtain the nearest point on ab
unit_vec_ab = ab/norm(ab)
nearest_ab_point = t_seg[0] + unit_vec_ab*(np.dot(ap, ab)/norm(ab))
nt_distance = norm(node_p-nearest_ab_point)
return nt_distance, nearest_ab_point
# Data read
if os.path.exists(out_dir + "/res.pickle"):
with open(out_dir + '/res.pickle', mode='rb') as f:
tmanual_output = pickle.load(f)
# --- todo this part will be removed future
# Removing node object from old version tmanual res.pickle
if len(tmanual_output[2][0]) > 7:
for ii in range(len(tmanual_output[0])):
tmanual_output[2][ii].pop(5)
with open(out_dir + '/res.pickle', mode='wb') as f:
pickle.dump(tmanual_output, f)
# ----------
else:
return "no res.pickle file in " + out_dir
df_tunnel = [["serial", "id", "name", "tunnel_length", "tunnel_sequence"]]
df_summary = [['serial', 'id', 'name', 'tunnel_length_total', 'tunnel_length_1st', 'tunnel_length_2nd',
'tunnel_length_3rd', 'tunnel_length_4more', 'tunnel_num_total', 'tunnel_num_1st',
'tunnel_num_2nd', 'tunnel_num_3rd', 'tunnel_num_4more']]
df_net = [["serial", "id", "name", "edge_from", "edge_to", "edge_len"]]
for i_df in tqdm(range(len(tmanual_output[0]))):
img_data = ImgData(None, tmanual_output[2][i_df])
tunnel_len, scale = img_data.measure_tunnel_length(scale_object_len)
tunnel = img_data.tunnel
node = img_data.obtain_nodes()
len_t = len(tunnel_len)
tunnel_sequence = [1]*len_t # primary, secondary, tertiary, ...
contact_tunnelID = [[-1]*len_t, [-1]*len_t] # connect-tunnel id for starts from and ends at
node_nearest_point = [[np.array([0, 0])]*len_t, [np.array([0, 0])]*len_t]
net_edge_from, net_edge_to, net_edge_len = [], [], []
# calculation
if len_t > 0:
# 1. for each tunnel, check from which tunnel starts
# Determine Primary tunnel (= not start from tunnel: >"contact_threshold" pixels)
for tt_n in range(len_t):
min_dis = 99999
nearest_point = np.array([0,0])
for tt_t in range(len_t):
if tt_n != tt_t:
if norm(node[0][tt_n]-node[0][tt_t]) < contact_threshold:
continue
ll = len(tunnel[tt_t])
for ttt in range(ll - 1):
tunnel_segment = tunnel[tt_t][ttt:(ttt + 2)]
dis_temp, nearest_point_temp = node_tunnel_distance(node[0][tt_n], tunnel_segment)
if dis_temp < min_dis:
min_dis = dis_temp
nearest_point = nearest_point_temp
node_on_tunnel = tt_t
if min_dis < contact_threshold:
contact_tunnelID[0][tt_n] = node_on_tunnel
node_nearest_point[0][tt_n] = nearest_point
tunnel_sequence[tt_n] = -1
# 2. for each tunnel, check at which tunnel ends
for tt_n in range(len_t):
min_dis = 99999
nearest_point = np.array([0,0])
for tt_t in range(len_t):
if tt_n != tt_t:
if norm(node[1][tt_n]-node[1][tt_t]) < contact_threshold:
continue
ll = len(tunnel[tt_t])
for ttt in range(ll - 1):
tunnel_segment = tunnel[tt_t][ttt:(ttt + 2)]
dis_temp, nearest_point_temp = node_tunnel_distance(node[1][tt_n], tunnel_segment)
if dis_temp < min_dis:
min_dis = dis_temp
nearest_point = nearest_point_temp
node_on_tunnel = tt_t
if min_dis < contact_threshold:
contact_tunnelID[1][tt_n] = node_on_tunnel
node_nearest_point[1][tt_n] = nearest_point
# determine Secondary, Tertiary, ..., tunnel
tunnel_seq_count = 1
while True:
check_tunnel = [i for i, x in enumerate(tunnel_sequence) if x == tunnel_seq_count]
for tt in range(len_t):
if contact_tunnelID[0][tt] in check_tunnel:
tunnel_sequence[tt] = tunnel_seq_count + 1
tunnel_seq_count = tunnel_seq_count + 1
if len(check_tunnel) == 0:
if min(tunnel_sequence) < 0:
return "Unexpected error in " + img_data.name + ": cannot get tunnel id."
break
# reconstruct network structure
if network_out:
# naming all nodes
node_name = [[0]*len_t, [0]*len_t]
for tt in range(len_t):
if contact_tunnelID[0][tt] < 0:
node_name[0][tt] = "t0" + str(tt).zfill(3) + "_0"
else:
node_name[0][tt] = "no"+str(tt).zfill(3)+"_0"
if contact_tunnelID[1][tt] < 0:
node_name[1][tt] = "t1" + str(tt).zfill(3) + "_1"
else:
node_name[1][tt] = "no"+str(tt).zfill(3)+"_1"
# check same node with different name
for tt_0 in range(len_t):
for tt_1 in range(len_t):
if tt_0 < tt_1:
# start node is the same?
if norm(node[0][tt_0] - node[0][tt_1]) < contact_threshold:
#print(node_name[0][tt_1], "->", node_name[0][tt_0] )
node_name[0][tt_1] = copy.copy(node_name[0][tt_0])
# start-end node is the same?
if norm(node[0][tt_0] - node[1][tt_1]) < contact_threshold:
#print(node_name[1][tt_1], "->", node_name[0][tt_0] )
node_name[1][tt_1] = copy.copy(node_name[0][tt_0])
for tt_0 in range(len_t):
for tt_1 in range(len_t):
if tt_0 < tt_1:
# end node is the same?
if norm(node[1][tt_0] - node[1][tt_1]) < contact_threshold:
#print(node_name[1][tt_1], "->", node_name[1][tt_0] )
node_name[1][tt_1] = copy.copy(node_name[1][tt_0])
# create edges
tunnel_seq_count = 1
while True:
check_tunnel = [i for i, x in enumerate(tunnel_sequence) if x == tunnel_seq_count]
for tt in check_tunnel:
ll = len(tunnel[tt])
# make a list of nodes that exist on the check_tunnel
list_start_node_on_tunnel = [i for i, x in enumerate(contact_tunnelID[0]) if x == tt]
list_end_node_on_tunnel = [i for i, x in enumerate(contact_tunnelID[1]) if x == tt]
list_node_on_tunnel = list_start_node_on_tunnel + list_end_node_on_tunnel
list_start_or_end = [0]*len(list_start_node_on_tunnel) + [1]*len(list_end_node_on_tunnel)
list_tunnel_seg_len = np.array([0]*len(list_node_on_tunnel))
# prep for measuring edge length
for nn in range(len(list_node_on_tunnel)):
tunnel_seg_len = 0
nearest_point = node_nearest_point[list_start_or_end[nn]][list_node_on_tunnel[nn]]
for ttt in range(ll-1):
tunnel_segment = tunnel[tt][ttt:(ttt + 2)]
dis_temp = node_tunnel_distance(nearest_point, tunnel_segment)[0]
if dis_temp < 0.00001: # == 0 may be affected by float
tunnel_seg_len = tunnel_seg_len + norm(nearest_point-tunnel_segment[0])
break
else:
tunnel_seg_len = tunnel_seg_len + norm(tunnel_segment[1]-tunnel_segment[0])
list_tunnel_seg_len[nn] = tunnel_seg_len
list_tunnel_seg_len = list_tunnel_seg_len/scale*scale_object_len
# reconstruct node-edge structures
net_edge_from.append(node_name[0][tt])
if len(list_node_on_tunnel) > 0:
tunnel_seg_len_order = np.argsort(list_tunnel_seg_len)
for nn in range(len(list_node_on_tunnel)):
node_temp = tunnel_seg_len_order[nn]
net_edge_to.append(node_name[list_start_or_end[node_temp]][list_node_on_tunnel[node_temp]])
if nn > 0:
net_edge_len.append(list_tunnel_seg_len[tunnel_seg_len_order[nn]] - list_tunnel_seg_len[tunnel_seg_len_order[nn-1]])
else:
net_edge_len.append(list_tunnel_seg_len[tunnel_seg_len_order[nn]])
net_edge_from.append(node_name[list_start_or_end[node_temp]][list_node_on_tunnel[node_temp]])
net_edge_to.append(node_name[1][tt])
net_edge_len.append(tunnel_len[tt] - list_tunnel_seg_len[tunnel_seg_len_order[len(list_node_on_tunnel)-1]])
else:
net_edge_to.append(node_name[1][tt])
net_edge_len.append(tunnel_len[tt])
tunnel_seq_count = tunnel_seq_count + 1
if len(check_tunnel) == 0:
break
# remove edge from/to the same node
for tt in reversed(range(len(net_edge_from))):
if net_edge_from[tt] == net_edge_to[tt]:
#print(tt)
net_edge_from.pop(tt)
net_edge_to.pop(tt)
net_edge_len.pop(tt)
# output
if network_out:
for tt in range(len(net_edge_from)):
df_net.append([img_data.serial, img_data.id, img_data.name, net_edge_from[tt], net_edge_to[tt], net_edge_len[tt]])
for tt in range(len(tunnel_len)):
df_tunnel.append([img_data.serial, img_data.id, img_data.name, tunnel_len[tt], tunnel_sequence[tt]])
tunnel_length_total = sum(tunnel_len)
tunnel_length_1st, tunnel_length_2nd, tunnel_length_3rd, tunnel_length_4more = 0, 0, 0, 0
tunnel_sequence = [4 if i > 3 else i for i in tunnel_sequence]
for tt in range(len(tunnel_len)):
if tunnel_sequence[tt] == 1:
tunnel_length_1st = tunnel_length_1st + tunnel_len[tt]
if tunnel_sequence[tt] == 2:
tunnel_length_2nd = tunnel_length_2nd + tunnel_len[tt]
if tunnel_sequence[tt] == 3:
tunnel_length_3rd = tunnel_length_3rd + tunnel_len[tt]
if tunnel_sequence[tt] == 4:
tunnel_length_4more = tunnel_length_4more + tunnel_len[tt]
df_append = [img_data.serial, img_data.id, img_data.name, tunnel_length_total, tunnel_length_1st,
tunnel_length_2nd, tunnel_length_3rd, tunnel_length_4more, len(tunnel_len),
tunnel_sequence.count(1), tunnel_sequence.count(2), tunnel_sequence.count(3),
tunnel_sequence.count(4)]
df_summary.append(df_append)
# image output
if output_image:
if os.path.exists(in_dir + img_data.name):
img = cv2.imread(in_dir + img_data.name)
#img = image_format(img)
img_data.colored_image_output(img, tunnel_sequence, out_dir, object_size, font_size, text_drawing)
else:
print(img_data.name + ": not find image file")
f = open(out_dir+'df_tunnel.csv', 'w', newline='')
writer = csv.writer(f)
writer.writerows(df_tunnel)
f.close()
f = open(out_dir+'df_summary.csv', 'w', newline='')
writer = csv.writer(f)
writer.writerows(df_summary)
f.close()
if network_out:
f = open(out_dir+'df_net.csv', 'w', newline='')
writer = csv.writer(f)
writer.writerows(df_net)
f.close()
return "Post-analysis finished"
def gui():
sg.theme('Dark')
frame_file = sg.Frame('Files', [
[sg.Text("In "),
sg.InputText('Input folder', enable_events=True, size=(20, 1)),
sg.FolderBrowse(button_text='select', size=(6, 1), key="-IN_FOLDER_NAME-"),
sg.InputText(' or files', enable_events=True, size=(20, 1)),
sg.FilesBrowse(button_text='select', size=(6, 1), key="-IN_FILES_NAME-")
],
[sg.Text("Out"),
sg.InputText('Output folder', enable_events=True, size=(20, 1)),
sg.FolderBrowse(button_text='select', size=(6, 1), key="-OUT_FOLDER_NAME-"),
sg.Text("(* will be created if not specified)")
],
[sg.Text("File extension (default = jpg)"),
sg.In(key='-FILE_EXTENSION-', size=(15, 1))]
], size=(800, 150))
frame_param = sg.Frame('Parameters', [
[sg.Text("Measurement:", size=(12,1)),
sg.Text("skip analyzed files", size=(15,1)),
sg.Combo(['true', 'false'], default_value="true", size=(6, 1), key="-SKIP_ANALYZED-")
],
[sg.Text("Post-analysis:", size=(12,1)),
sg.Text("scale length (mm)", size=(15,1)),
sg.In(key='-SCALE_OBJECT-', size=(6, 1)),
sg.Text("output image", size=(12,1)),
sg.Combo(['true', 'false'], default_value="true", size=(6, 1), key="-OUTPUT_IMAGE-")],
[sg.Text("", size=(12,1)),
sg.Text("contact thld (def 10 px)"),
sg.In(key='-CONTACT_THRESHOLD-', size=(6, 1)),
sg.Text("network produce", size=(12,1)),
sg.Combo(['true', 'false'], default_value="true", size=(6, 1), key="-NETWORK-")
],
[sg.Text("Drawing:", size=(12,1)),
sg.Text("line width (def 5)"),
sg.In(key='-LINE_WIDTH-', size=(6, 1)),
sg.Text("font size (def 2)"),
sg.In(key='-FONT_SIZE-', size=(6, 1)),
sg.Text("num draw"),
sg.Combo(['true', 'false'], default_value="true", size=(6, 1), key="-TEXT_DRAWNING-")
]
], size=(800, 160))
frame_measure_buttom = sg.Frame('', [
[sg.Submit(button_text='Measurement start', size=(20, 3), key='measurement_start')]], size=(180, 100))
frame_post_buttom = sg.Frame('', [
[sg.Submit(button_text='Post-analysis start', size=(20, 3), key='post_analysis_start',
button_color=('white', 'chocolate'))]], size=(180, 100))
frame3 = sg.Frame('Manual', [
[sg.Text("Images should be named in 'id_number.jpg'\n"
" e.g., TunnelA_00.jpg, TunnelA_01.jpg, ..., TunnelA_20.jpg, TunnelB_00.jpg, TunnelB_01.jpg, ...")],
[sg.Text("Measurement", size=(12,1)),
sg.Text("sequentially process images with below process (LC: left click, RC: right click)")],
[sg.Text("", size=(1,3)),
sg.Text("1. Check", size=(10,3)),
sg.Text("-LC(or V):analyze -RC(or N):skip \n"
"-Esc:exit (saved) -B:previous image\n"
"-R:re-analyze (append to previous) -A:re-analyze (from the scratch)")],
[sg.Text("", size=(1,2)),
sg.Text("2. Ref point", size=(10,2)),
sg.Text("-LC:the same landscape point across images (used for calibration).\n"
"-RC:skip")],
[sg.Text("", size=(1,3)),
sg.Text("3. Measure", size=(10,3)),
sg.Text("-LC:measure tunnel length. -RC to next or finish at the end.\n"
"-Q:undo -Z:zoom in (x2-x8) -X:stop zoom -E:go-to-end -Esc:finish\n"
" Branching tunnels should be on the previous tunnels line")],
[sg.Text("", size=(1,1)),
sg.Text("4. Set scale", size=(10,1)),
sg.Text("-Drag to set the scale -RC to finish.")],
[sg.Text("Post-analysis", size=(12,1)),
sg.Text("use smaller node-gallery contact threshold for small galleries relative to image")]
], size=(1000, 400))
frame_buttons = sg.Column([[frame_measure_buttom], [frame_post_buttom]])
frame_input = sg.Column([[frame_file],[frame_param]])
layout = [[frame_input, frame_buttons], [frame3]]
window = sg.Window('TManual, a tool to assist in measuring length development of structures',
layout, resizable=True)
while True:
event, values = window.read()
if event is None:
print('exit')
break
else:
if event == 'measurement_start':
# file info
if len(values["-IN_FOLDER_NAME-"]) == 0 and len(values["-IN_FILES_NAME-"]) == 0:
print("no input!")
continue
elif len(values["-IN_FILES_NAME-"]) > 0: # file names provided
in_files = values["-IN_FILES_NAME-"]
if len(values["-OUT_FOLDER_NAME-"]) == 0:
if len(values["-IN_FOLDER_NAME-"]) > 0:
in_dir = values["-IN_FOLDER_NAME-"] + "/"
out_dir = in_dir+"/tmanual/"
if not os.path.exists(out_dir):
os.makedirs(out_dir)
else:
print("no output directly!")
continue
else:
out_dir = values["-OUT_FOLDER_NAME-"]+"/"
in_dir = 0
else:
in_dir = values["-IN_FOLDER_NAME-"]+"/"
in_files = 0
if len(values["-OUT_FOLDER_NAME-"]) == 0:
out_dir = in_dir+"/tmanual/"
if not os.path.exists(out_dir):
os.makedirs(out_dir)
else:
out_dir = values["-OUT_FOLDER_NAME-"]+"/"
# parameters
skip_analyzed = values["-SKIP_ANALYZED-"]
if len(values["-FILE_EXTENSION-"]) == 0:
file_extension = "jpg"
else:
file_extension = values["-FILE_EXTENSION-"]
if len(values["-LINE_WIDTH-"]) == 0:
object_size = 5
else:
object_size = int(values["-LINE_WIDTH-"])
if len(values["-FONT_SIZE-"]) == 0:
font_size = 2
else:
font_size = int(values["-FONT_SIZE-"])
text_drawing = values["-TEXT_DRAWNING-"]
if text_drawing == "true":
text_drawing = True
else:
text_drawing = False
print("input dir: "+str(in_dir))
print("input files: "+str(in_files))
print("output dir: "+out_dir)
message = measurement(in_dir, in_files, out_dir, skip_analyzed, file_extension, object_size, font_size, text_drawing)
if message is not None:
sg.popup(message)
elif event == 'post_analysis_start':
output_image = values["-OUTPUT_IMAGE-"]
if output_image:
if len(values["-IN_FOLDER_NAME-"]) == 0:
print("no input!")
continue
else:
in_dir = values["-IN_FOLDER_NAME-"] + "/"
if len(values["-OUT_FOLDER_NAME-"]) == 0:
if len(values["-IN_FOLDER_NAME-"]) > 0:
out_dir = in_dir + "/tmanual/"
else:
print("no input!")
else:
out_dir = values["-OUT_FOLDER_NAME-"] + "/"
try:
float(values['-SCALE_OBJECT-'])
except ValueError:
scale_object_len = float(1)
print("Warning: Scale object length is not indicated. Put 1 (mm) instead.")
else:
scale_object_len = float(values["-SCALE_OBJECT-"])
if len(values["-LINE_WIDTH-"]) == 0:
object_size = 5
else:
object_size = int(values["-LINE_WIDTH-"])
if len(values["-FONT_SIZE-"]) == 0:
font_size = 2
else:
font_size = int(values["-FONT_SIZE-"])
text_drawing = values["-TEXT_DRAWNING-"]
if text_drawing == "true":
text_drawing = True
else:
text_drawing = False
if len(values["-CONTACT_THRESHOLD-"]) == 0:
contact_threshold = 10
else:
contact_threshold = int(values["-CONTACT_THRESHOLD-"])
network = values["-NETWORK-"]
if network == "true":
network = True
else:
network = False
message = postanalysis(in_dir, out_dir, scale_object_len, contact_threshold, network, output_image, object_size, font_size, text_drawing)
sg.popup(message)
window.close()
gui()