-
Notifications
You must be signed in to change notification settings - Fork 1.3k
/
Copy pathmain.c
667 lines (548 loc) · 20.2 KB
/
main.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
/*
* Copyright (c) 2024 Nordic Semiconductor ASA
*
* SPDX-License-Identifier: LicenseRef-Nordic-5-Clause
*/
#include "hrt/hrt.h"
#include <zephyr/drivers/mspi.h>
#include <zephyr/ipc/ipc_service.h>
#include <zephyr/kernel.h>
#include <hal/nrf_vpr_csr.h>
#include <hal/nrf_vpr_csr_vio.h>
#include <hal/nrf_vpr_csr_vtim.h>
#include <hal/nrf_timer.h>
#include <haly/nrfy_gpio.h>
#include <drivers/mspi/nrfe_mspi.h>
#define SUPPORTED_IO_MODES_COUNT 7
#define DEVICES_MAX 5
#define DATA_PINS_MAX 8
#define STD_PAD_BIAS_CNT0_THRESHOLD 1
#define PAD_BIAS_VALUE 1
#define MAX_SHIFT_COUNT 63
#define CE_PIN_UNUSED UINT8_MAX
#define HRT_IRQ_PRIORITY 2
#define HRT_VEVIF_IDX_READ 17
#define HRT_VEVIF_IDX_WRITE 18
#define VEVIF_IRQN(vevif) VEVIF_IRQN_1(vevif)
#define VEVIF_IRQN_1(vevif) VPRCLIC_##vevif##_IRQn
#ifdef CONFIG_SOC_NRF54L15
#define NRF_GPIOHSPADCTRL ((NRF_GPIOHSPADCTRL_Type *)NRF_P2_S_BASE)
#else
#error "Unsupported SoC for SDP MSPI"
#endif
#define DATA_LINE_INDEX(pinctr_fun) (pinctr_fun - NRF_FUN_SDP_MSPI_DQ0)
BUILD_ASSERT(CONFIG_SDP_MSPI_MAX_RESPONSE_SIZE > 0, "Response max size should be greater that 0");
static const uint8_t pin_to_vio_map[NRFE_MSPI_PINS_MAX] = {
4, /* Physical pin 0 */
0, /* Physical pin 1 */
1, /* Physical pin 2 */
3, /* Physical pin 3 */
2, /* Physical pin 4 */
5, /* Physical pin 5 */
6, /* Physical pin 6 */
7, /* Physical pin 7 */
8, /* Physical pin 8 */
9, /* Physical pin 9 */
10, /* Physical pin 10 */
};
static const hrt_xfer_bus_widths_t io_modes[SUPPORTED_IO_MODES_COUNT] = {
{1, 1, 1, 1}, /* MSPI_IO_MODE_SINGLE */
{2, 2, 2, 2}, /* MSPI_IO_MODE_DUAL */
{1, 1, 1, 2}, /* MSPI_IO_MODE_DUAL_1_1_2 */
{1, 2, 2, 2}, /* MSPI_IO_MODE_DUAL_1_2_2 */
{4, 4, 4, 4}, /* MSPI_IO_MODE_QUAD */
{1, 1, 1, 4}, /* MSPI_IO_MODE_QUAD_1_1_4 */
{1, 4, 4, 4}, /* MSPI_IO_MODE_QUAD_1_4_4 */
};
static volatile uint8_t ce_vios_count;
static volatile uint8_t ce_vios[DEVICES_MAX];
static volatile uint8_t data_vios_count;
static volatile uint8_t data_vios[DATA_PINS_MAX];
static volatile uint8_t clk_vio;
static volatile nrfe_mspi_dev_config_t nrfe_mspi_devices[DEVICES_MAX];
static volatile nrfe_mspi_xfer_config_t nrfe_mspi_xfer_config;
static volatile nrfe_mspi_xfer_config_t *nrfe_mspi_xfer_config_ptr = &nrfe_mspi_xfer_config;
static volatile hrt_xfer_t xfer_params;
static volatile uint8_t response_buffer[CONFIG_SDP_MSPI_MAX_RESPONSE_SIZE];
static struct ipc_ept ep;
static atomic_t ipc_atomic_sem = ATOMIC_INIT(0);
#if defined(CONFIG_SDP_MSPI_FAULT_TIMER)
static NRF_TIMER_Type *fault_timer;
#endif
static volatile uint32_t *cpuflpr_error_ctx_ptr =
(uint32_t *)DT_REG_ADDR(DT_NODELABEL(cpuflpr_error_code));
static void adjust_tail(volatile hrt_xfer_data_t *xfer_data, uint16_t frame_width,
uint32_t data_length)
{
if (data_length == 0) {
return;
}
/* Due to hardware limitation, it is not possible to send only 1
* clock pulse.
*/
NRFX_ASSERT(data_length / frame_width >= 1);
NRFX_ASSERT(data_vios_count >= frame_width);
NRFX_ASSERT(data_length % frame_width == 0);
uint8_t last_word_length = data_length % BITS_IN_WORD;
uint8_t penultimate_word_length = BITS_IN_WORD;
xfer_data->word_count = NRFX_CEIL_DIV(data_length, BITS_IN_WORD);
/* Due to hardware limitations it is not possible to send only 1
* clock cycle. Therefore when data_length%32==FRAME_WIDTH last
* word is sent shorter (24bits) and the remaining byte and
* FRAME_WIDTH number of bits are bit is sent together.
*/
if (last_word_length == 0) {
last_word_length = BITS_IN_WORD;
if (xfer_data->data != NULL) {
xfer_data->last_word =
((uint32_t *)xfer_data->data)[xfer_data->word_count - 1];
}
} else if ((last_word_length / frame_width == 1) && (xfer_data->word_count > 1)) {
penultimate_word_length -= BITS_IN_BYTE;
last_word_length += BITS_IN_BYTE;
if (xfer_data->data != NULL) {
xfer_data->last_word =
((uint32_t *)xfer_data->data)[xfer_data->word_count - 2] >>
(BITS_IN_WORD - BITS_IN_BYTE) |
((uint32_t *)xfer_data->data)[xfer_data->word_count - 1]
<< BITS_IN_BYTE;
}
} else if (xfer_data->data == NULL) {
xfer_data->last_word = 0;
} else {
xfer_data->last_word = ((uint32_t *)xfer_data->data)[xfer_data->word_count - 1];
}
xfer_data->last_word_clocks = last_word_length / frame_width;
xfer_data->penultimate_word_clocks = penultimate_word_length / frame_width;
}
static void configure_clock(enum mspi_cpp_mode cpp_mode)
{
nrf_vpr_csr_vio_config_t vio_config = {
.input_sel = false,
.stop_cnt = true,
};
uint16_t out = nrf_vpr_csr_vio_out_get();
switch (cpp_mode) {
case MSPI_CPP_MODE_0: {
vio_config.clk_polarity = 0;
WRITE_BIT(out, clk_vio, VPRCSR_NORDIC_OUT_LOW);
break;
}
case MSPI_CPP_MODE_1: {
vio_config.clk_polarity = 1;
WRITE_BIT(out, clk_vio, VPRCSR_NORDIC_OUT_LOW);
break;
}
case MSPI_CPP_MODE_2: {
vio_config.clk_polarity = 1;
WRITE_BIT(out, clk_vio, VPRCSR_NORDIC_OUT_HIGH);
break;
}
case MSPI_CPP_MODE_3: {
vio_config.clk_polarity = 0;
WRITE_BIT(out, clk_vio, VPRCSR_NORDIC_OUT_HIGH);
break;
}
}
nrf_vpr_csr_vio_out_set(out);
nrf_vpr_csr_vio_config_set(&vio_config);
}
static void xfer_execute(nrfe_mspi_xfer_packet_msg_t *xfer_packet)
{
volatile nrfe_mspi_dev_config_t *device =
&nrfe_mspi_devices[nrfe_mspi_xfer_config_ptr->device_index];
xfer_params.counter_value = device->cnt0_value;
xfer_params.ce_vio = ce_vios[device->ce_index];
xfer_params.ce_hold = nrfe_mspi_xfer_config_ptr->hold_ce;
xfer_params.cpp_mode = device->cpp;
xfer_params.ce_polarity = device->ce_polarity;
xfer_params.bus_widths = io_modes[device->io_mode];
xfer_params.clk_vio = clk_vio;
/* Fix position of command and address if command/address length is < BITS_IN_WORD,
* so that leading zeros would not be printed instead of data bits.
*/
xfer_packet->command =
xfer_packet->command
<< (BITS_IN_WORD - nrfe_mspi_xfer_config_ptr->command_length * BITS_IN_BYTE);
xfer_packet->address =
xfer_packet->address
<< (BITS_IN_WORD - nrfe_mspi_xfer_config_ptr->address_length * BITS_IN_BYTE);
xfer_params.xfer_data[HRT_FE_COMMAND].fun_out = HRT_FUN_OUT_WORD;
xfer_params.xfer_data[HRT_FE_COMMAND].data = (uint8_t *)&xfer_packet->command;
xfer_params.xfer_data[HRT_FE_COMMAND].word_count = 0;
adjust_tail(&xfer_params.xfer_data[HRT_FE_COMMAND], xfer_params.bus_widths.command,
nrfe_mspi_xfer_config_ptr->command_length * BITS_IN_BYTE);
xfer_params.xfer_data[HRT_FE_ADDRESS].fun_out = HRT_FUN_OUT_WORD;
xfer_params.xfer_data[HRT_FE_ADDRESS].data = (uint8_t *)&xfer_packet->address;
xfer_params.xfer_data[HRT_FE_ADDRESS].word_count = 0;
adjust_tail(&xfer_params.xfer_data[HRT_FE_ADDRESS], xfer_params.bus_widths.address,
nrfe_mspi_xfer_config_ptr->address_length * BITS_IN_BYTE);
xfer_params.xfer_data[HRT_FE_DUMMY_CYCLES].fun_out = HRT_FUN_OUT_WORD;
xfer_params.xfer_data[HRT_FE_DUMMY_CYCLES].data = NULL;
xfer_params.xfer_data[HRT_FE_DUMMY_CYCLES].word_count = 0;
hrt_frame_element_t elem =
nrfe_mspi_xfer_config_ptr->address_length != 0 ? HRT_FE_ADDRESS : HRT_FE_COMMAND;
/* Up to 63 clock pulses (including data from previous part) can be sent by simply
* increasing shift count of last word in the previous part.
* Beyond that, dummy cycles have to be treated af different transfer part.
*/
if (xfer_params.xfer_data[elem].last_word_clocks + nrfe_mspi_xfer_config_ptr->tx_dummy <=
MAX_SHIFT_COUNT) {
xfer_params.xfer_data[elem].last_word_clocks += nrfe_mspi_xfer_config_ptr->tx_dummy;
} else {
adjust_tail(&xfer_params.xfer_data[HRT_FE_DUMMY_CYCLES],
xfer_params.bus_widths.dummy_cycles,
nrfe_mspi_xfer_config_ptr->tx_dummy *
xfer_params.bus_widths.dummy_cycles);
}
xfer_params.xfer_data[HRT_FE_DATA].fun_out = HRT_FUN_OUT_BYTE;
xfer_params.xfer_data[HRT_FE_DATA].data = xfer_packet->data;
xfer_params.xfer_data[HRT_FE_DATA].word_count = 0;
adjust_tail(&xfer_params.xfer_data[HRT_FE_DATA], xfer_params.bus_widths.data,
xfer_packet->num_bytes * BITS_IN_BYTE);
/* Hardware issue: Additional clock edge when transmitting in modes other
* than MSPI_CPP_MODE_0.
* Here is first part workaround of that issue only for MSPI_CPP_MODE_2.
* Workaround: Add one pulse more to the last word in message,
* and disable clock before the last pulse.
*/
if (device->cpp == MSPI_CPP_MODE_2) {
for (uint8_t i = 0; i < HRT_FE_MAX; i++) {
if (xfer_params.xfer_data[HRT_FE_MAX - 1 - i].word_count != 0) {
xfer_params.xfer_data[HRT_FE_MAX - 1 - i].last_word_clocks++;
break;
}
}
}
nrf_vpr_clic_int_pending_set(NRF_VPRCLIC, VEVIF_IRQN(HRT_VEVIF_IDX_WRITE));
}
void prepare_and_read_data(nrfe_mspi_xfer_packet_msg_t *xfer_packet, volatile uint8_t *buffer)
{
volatile nrfe_mspi_dev_config_t *device =
&nrfe_mspi_devices[nrfe_mspi_xfer_config_ptr->device_index];
nrf_vpr_csr_vio_config_t config;
xfer_params.counter_value = device->cnt0_value;
xfer_params.ce_vio = ce_vios[device->ce_index];
xfer_params.ce_hold = nrfe_mspi_xfer_config_ptr->hold_ce;
xfer_params.ce_polarity = device->ce_polarity;
xfer_params.bus_widths = io_modes[device->io_mode];
xfer_params.xfer_data[HRT_FE_DATA].data = buffer;
nrf_vpr_csr_vio_config_get(&config);
config.input_sel = true;
nrf_vpr_csr_vio_config_set(&config);
/*
* Fix position of command and address if command/address length is < BITS_IN_WORD,
* so that leading zeros would not be printed instead of data bits.
*/
xfer_packet->command =
xfer_packet->command
<< (BITS_IN_WORD - nrfe_mspi_xfer_config_ptr->command_length * BITS_IN_BYTE);
xfer_packet->address =
xfer_packet->address
<< (BITS_IN_WORD - nrfe_mspi_xfer_config_ptr->address_length * BITS_IN_BYTE);
/* Configure command phase. */
xfer_params.xfer_data[HRT_FE_COMMAND].fun_out = HRT_FUN_OUT_WORD;
xfer_params.xfer_data[HRT_FE_COMMAND].data = (uint8_t *)&xfer_packet->command;
xfer_params.xfer_data[HRT_FE_COMMAND].word_count =
nrfe_mspi_xfer_config_ptr->command_length;
/* Configure address phase. */
xfer_params.xfer_data[HRT_FE_ADDRESS].fun_out = HRT_FUN_OUT_WORD;
xfer_params.xfer_data[HRT_FE_ADDRESS].data = (uint8_t *)&xfer_packet->address;
xfer_params.xfer_data[HRT_FE_ADDRESS].word_count =
nrfe_mspi_xfer_config_ptr->address_length;
/* Configure data phase. */
xfer_params.xfer_data[HRT_FE_DATA].word_count = xfer_packet->num_bytes;
/* Read/write barrier to make sure that all configuration is done before jumping to HRT. */
nrf_barrier_rw();
/* Read data */
nrf_vpr_clic_int_pending_set(NRF_VPRCLIC, VEVIF_IRQN(HRT_VEVIF_IDX_READ));
}
static void config_pins(nrfe_mspi_pinctrl_soc_pin_msg_t *pins_cfg)
{
ce_vios_count = 0;
data_vios_count = 0;
xfer_params.tx_direction_mask = 0;
xfer_params.rx_direction_mask = 0;
for (uint8_t i = 0; i < DATA_PINS_MAX; i++) {
data_vios[i] = UINT8_MAX;
}
for (uint8_t i = 0; i < pins_cfg->pins_count; i++) {
uint32_t psel = NRF_GET_PIN(pins_cfg->pin[i]);
uint32_t fun = NRF_GET_FUN(pins_cfg->pin[i]);
if ((psel == NRF_PIN_DISCONNECTED) || (pins_cfg->pin[i] == 0)) {
continue;
}
uint8_t pin_number = NRF_PIN_NUMBER_TO_PIN(psel);
NRFX_ASSERT(pin_number < NRFE_MSPI_PINS_MAX);
if ((fun >= NRF_FUN_SDP_MSPI_CS0) && (fun <= NRF_FUN_SDP_MSPI_CS4)) {
ce_vios[ce_vios_count] = pin_to_vio_map[pin_number];
WRITE_BIT(xfer_params.tx_direction_mask, ce_vios[ce_vios_count],
VPRCSR_NORDIC_DIR_OUTPUT);
WRITE_BIT(xfer_params.rx_direction_mask, ce_vios[ce_vios_count],
VPRCSR_NORDIC_DIR_OUTPUT);
ce_vios_count++;
} else if ((fun >= NRF_FUN_SDP_MSPI_DQ0) && (fun <= NRF_FUN_SDP_MSPI_DQ7)) {
NRFX_ASSERT(DATA_LINE_INDEX(fun) < DATA_PINS_MAX);
NRFX_ASSERT(data_vios[DATA_LINE_INDEX(fun)] == UINT8_MAX);
data_vios[DATA_LINE_INDEX(fun)] = pin_to_vio_map[pin_number];
WRITE_BIT(xfer_params.tx_direction_mask, data_vios[DATA_LINE_INDEX(fun)],
VPRCSR_NORDIC_DIR_OUTPUT);
WRITE_BIT(xfer_params.rx_direction_mask, data_vios[DATA_LINE_INDEX(fun)],
VPRCSR_NORDIC_DIR_INPUT);
data_vios_count++;
} else if (fun == NRF_FUN_SDP_MSPI_SCK) {
clk_vio = pin_to_vio_map[pin_number];
WRITE_BIT(xfer_params.tx_direction_mask, clk_vio, VPRCSR_NORDIC_DIR_OUTPUT);
WRITE_BIT(xfer_params.rx_direction_mask, clk_vio, VPRCSR_NORDIC_DIR_OUTPUT);
}
}
nrf_vpr_csr_vio_dir_set(xfer_params.tx_direction_mask);
/* Set all devices as undefined. */
for (uint8_t i = 0; i < DEVICES_MAX; i++) {
nrfe_mspi_devices[i].ce_index = CE_PIN_UNUSED;
}
}
static void ep_bound(void *priv)
{
atomic_set_bit(&ipc_atomic_sem, NRFE_MSPI_EP_BOUNDED);
}
static void ep_recv(const void *data, size_t len, void *priv)
{
#ifdef CONFIG_SDP_MSPI_IPC_NO_COPY
data = *(void **)data;
#endif
(void)priv;
(void)len;
uint8_t opcode = *(uint8_t *)data;
uint32_t num_bytes = 0;
#if defined(CONFIG_SDP_MSPI_FAULT_TIMER)
if (fault_timer != NULL) {
nrf_timer_task_trigger(fault_timer, NRF_TIMER_TASK_START);
}
#endif
switch (opcode) {
#if defined(CONFIG_SDP_MSPI_FAULT_TIMER)
case NRFE_MSPI_CONFIG_TIMER_PTR: {
const nrfe_mspi_flpr_timer_msg_t *timer_data =
(const nrfe_mspi_flpr_timer_msg_t *)data;
fault_timer = timer_data->timer_ptr;
break;
}
#endif
case NRFE_MSPI_CONFIG_PINS: {
nrfe_mspi_pinctrl_soc_pin_msg_t *pins_cfg = (nrfe_mspi_pinctrl_soc_pin_msg_t *)data;
config_pins(pins_cfg);
break;
}
case NRFE_MSPI_CONFIG_DEV: {
nrfe_mspi_dev_config_msg_t *dev_config = (nrfe_mspi_dev_config_msg_t *)data;
NRFX_ASSERT(dev_config->device_index < DEVICES_MAX);
NRFX_ASSERT(dev_config->dev_config.io_mode < SUPPORTED_IO_MODES_COUNT);
NRFX_ASSERT(dev_config->dev_config.cpp <= MSPI_CPP_MODE_3);
NRFX_ASSERT(dev_config->dev_config.ce_index < ce_vios_count);
NRFX_ASSERT(dev_config->dev_config.ce_polarity <= MSPI_CE_ACTIVE_HIGH);
nrfe_mspi_devices[dev_config->device_index] = dev_config->dev_config;
/* Configure CE pin. */
if (nrfe_mspi_devices[dev_config->device_index].ce_polarity == MSPI_CE_ACTIVE_LOW) {
nrf_vpr_csr_vio_out_or_set(
BIT(ce_vios[nrfe_mspi_devices[dev_config->device_index].ce_index]));
} else {
nrf_vpr_csr_vio_out_clear_set(
BIT(ce_vios[nrfe_mspi_devices[dev_config->device_index].ce_index]));
}
if (dev_config->dev_config.io_mode == MSPI_IO_MODE_SINGLE) {
if (data_vios[DATA_LINE_INDEX(NRF_FUN_SDP_MSPI_DQ2)] != UINT8_MAX &&
data_vios[DATA_LINE_INDEX(NRF_FUN_SDP_MSPI_DQ3)] != UINT8_MAX) {
nrf_vpr_csr_vio_out_or_set(
BIT(data_vios[DATA_LINE_INDEX(NRF_FUN_SDP_MSPI_DQ2)]));
nrf_vpr_csr_vio_out_or_set(
BIT(data_vios[DATA_LINE_INDEX(NRF_FUN_SDP_MSPI_DQ3)]));
}
} else {
nrf_vpr_csr_vio_out_clear_set(
BIT(data_vios[DATA_LINE_INDEX(NRF_FUN_SDP_MSPI_DQ2)]));
nrf_vpr_csr_vio_out_clear_set(
BIT(data_vios[DATA_LINE_INDEX(NRF_FUN_SDP_MSPI_DQ3)]));
}
break;
}
case NRFE_MSPI_CONFIG_XFER: {
nrfe_mspi_xfer_config_msg_t *xfer_config = (nrfe_mspi_xfer_config_msg_t *)data;
NRFX_ASSERT(xfer_config->xfer_config.device_index < DEVICES_MAX);
/* Check if device was configured. */
NRFX_ASSERT(nrfe_mspi_devices[xfer_config->xfer_config.device_index].ce_index <
ce_vios_count);
NRFX_ASSERT(xfer_config->xfer_config.command_length <= sizeof(uint32_t));
NRFX_ASSERT(xfer_config->xfer_config.address_length <= sizeof(uint32_t));
NRFX_ASSERT(xfer_config->xfer_config.tx_dummy == 0 ||
xfer_config->xfer_config.command_length != 0 ||
xfer_config->xfer_config.address_length != 0);
#ifdef CONFIG_SDP_MSPI_IPC_NO_COPY
nrfe_mspi_xfer_config_ptr = &xfer_config->xfer_config;
#else
nrfe_mspi_xfer_config = xfer_config->xfer_config;
#endif
configure_clock(nrfe_mspi_devices[nrfe_mspi_xfer_config_ptr->device_index].cpp);
/* Tune up pad bias for frequencies above 32MHz */
if (nrfe_mspi_devices[nrfe_mspi_xfer_config_ptr->device_index].cnt0_value <=
STD_PAD_BIAS_CNT0_THRESHOLD) {
NRF_GPIOHSPADCTRL->BIAS = PAD_BIAS_VALUE;
}
break;
}
case NRFE_MSPI_TX:
nrfe_mspi_xfer_packet_msg_t *packet = (nrfe_mspi_xfer_packet_msg_t *)data;
xfer_execute(packet);
break;
case NRFE_MSPI_TXRX: {
nrfe_mspi_xfer_packet_msg_t *packet = (nrfe_mspi_xfer_packet_msg_t *)data;
num_bytes = packet->num_bytes;
if (num_bytes > 0) {
prepare_and_read_data(packet, response_buffer + 1);
}
break;
}
default:
opcode = NRFE_MSPI_WRONG_OPCODE;
break;
}
response_buffer[0] = opcode;
ipc_service_send(&ep, (const void *)response_buffer, sizeof(opcode) + num_bytes);
#if defined(CONFIG_SDP_MSPI_FAULT_TIMER)
if (fault_timer != NULL) {
nrf_timer_task_trigger(fault_timer, NRF_TIMER_TASK_CLEAR);
nrf_timer_task_trigger(fault_timer, NRF_TIMER_TASK_STOP);
}
#endif
}
static const struct ipc_ept_cfg ep_cfg = {
.cb = {.bound = ep_bound, .received = ep_recv},
};
static int backend_init(void)
{
int ret = 0;
const struct device *ipc0_instance;
volatile uint32_t delay = 0;
#if !defined(CONFIG_SYS_CLOCK_EXISTS)
/* Wait a little bit for IPC service to be ready on APP side. */
while (delay < 5000) {
delay++;
}
#endif
ipc0_instance = DEVICE_DT_GET(DT_NODELABEL(ipc0));
ret = ipc_service_open_instance(ipc0_instance);
if ((ret < 0) && (ret != -EALREADY)) {
return ret;
}
ret = ipc_service_register_endpoint(ipc0_instance, &ep, &ep_cfg);
if (ret < 0) {
return ret;
}
/* Wait for endpoint to be bound. */
while (!atomic_test_and_clear_bit(&ipc_atomic_sem, NRFE_MSPI_EP_BOUNDED)) {
}
return 0;
}
__attribute__((interrupt)) void hrt_handler_read(void)
{
hrt_read(&xfer_params);
}
__attribute__((interrupt)) void hrt_handler_write(void)
{
hrt_write((hrt_xfer_t *)&xfer_params);
}
/**
* @brief Trap handler for SDP application.
*
* @details
* This function is called on unhandled CPU exceptions. It's a good place to
* handle critical errors and notify the core that the SDP application has
* crashed.
*
* @param mcause - cause of the exception (from mcause register)
* @param mepc - address of the instruction that caused the exception (from mepc register)
* @param mtval - additional value (e.g. bad address)
* @param context - pointer to the saved context (only some registers are saved - ra, t0, t1, t2)
*/
void trap_handler(uint32_t mcause, uint32_t mepc, uint32_t mtval, void *context)
{
const uint8_t fault_opcode = NRFE_MSPI_SDP_APP_HARD_FAULT;
/* It can be distinguish whether the exception was caused by an interrupt or an error:
* On RV32, bit 31 of the mcause register indicates whether the event is an interrupt.
*/
if (mcause & 0x80000000) {
/* Interrupt – can be handled or ignored */
} else {
/* Exception – critical error */
}
cpuflpr_error_ctx_ptr[0] = mcause;
cpuflpr_error_ctx_ptr[1] = mepc;
cpuflpr_error_ctx_ptr[2] = mtval;
cpuflpr_error_ctx_ptr[3] = (uint32_t)context;
ipc_service_send(&ep, &fault_opcode, sizeof(fault_opcode));
while (1) {
/* Loop forever */
}
}
/* The trap_entry function is the entry point for exception handling.
* The naked attribute prevents the compiler from generating an automatic prologue/epilogue.
*/
__attribute__((naked)) void trap_entry(void)
{
__asm__ volatile(
/* Reserve space on the stack:
* 16 bytes for 4 registers context (ra, t0, t1, t2).
*/
"addi sp, sp, -16\n"
"sw ra, 12(sp)\n"
"sw t0, 8(sp)\n"
"sw t1, 4(sp)\n"
"sw t2, 0(sp)\n"
/* Read CSR: mcause, mepc, mtval */
"csrr t0, mcause\n" /* t0 = mcause */
"csrr t1, mepc\n" /* t1 = mepc */
"csrr t2, mtval\n" /* t2 = mtval */
/* Prepare arguments for trap_handler function:
* a0 = mcause (t0), a1 = mepc (t1), a2 = mtval (t2), a3 = sp (pointer on context).
*/
"mv a0, t0\n"
"mv a1, t1\n"
"mv a2, t2\n"
"mv a3, sp\n"
"call trap_handler\n"
/* Restore registers values */
"lw ra, 12(sp)\n"
"lw t0, 8(sp)\n"
"lw t1, 4(sp)\n"
"lw t2, 0(sp)\n"
"addi sp, sp, 16\n"
"mret\n");
}
void init_trap_handler(void)
{
/* Write the address of the trap_entry function into the mtvec CSR.
* Note: On RV32, the address must be aligned to 4 bytes.
*/
uintptr_t trap_entry_addr = (uintptr_t)&trap_entry;
__asm__ volatile("csrw mtvec, %0\n"
: /* no outs */
: "r"(trap_entry_addr));
}
int main(void)
{
int ret = 0;
init_trap_handler();
ret = backend_init();
if (ret < 0) {
return 0;
}
IRQ_DIRECT_CONNECT(HRT_VEVIF_IDX_READ, HRT_IRQ_PRIORITY, hrt_handler_read, 0);
nrf_vpr_clic_int_enable_set(NRF_VPRCLIC, VEVIF_IRQN(HRT_VEVIF_IDX_READ), true);
IRQ_DIRECT_CONNECT(HRT_VEVIF_IDX_WRITE, HRT_IRQ_PRIORITY, hrt_handler_write, 0);
nrf_vpr_clic_int_enable_set(NRF_VPRCLIC, VEVIF_IRQN(HRT_VEVIF_IDX_WRITE), true);
nrf_vpr_csr_rtperiph_enable_set(true);
while (true) {
k_cpu_idle();
}
return 0;
}