-
Notifications
You must be signed in to change notification settings - Fork 1.3k
/
Copy pathnrf_rpc_uart.c
510 lines (407 loc) · 12.7 KB
/
nrf_rpc_uart.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
/*
* Copyright (c) 2024 Nordic Semiconductor ASA
*
* SPDX-License-Identifier: LicenseRef-Nordic-5-Clause
*/
#include <nrf_rpc.h>
#include <nrf_rpc_tr.h>
#include <nrf_rpc/nrf_rpc_uart.h>
#include <nrf_rpc_errno.h>
#include <zephyr/drivers/uart.h>
#include <zephyr/logging/log.h>
#include <zephyr/sys/util.h>
#include <zephyr/sys/byteorder.h>
#include <zephyr/sys/crc.h>
LOG_MODULE_REGISTER(nrf_rpc_uart, CONFIG_NRF_RPC_TR_LOG_LEVEL);
#define CRC_SIZE sizeof(uint16_t)
enum {
HDLC_CHAR_ESCAPE = 0x7d,
HDLC_CHAR_DELIMITER = 0x7e,
};
enum flip_state {
FLIP_ZERO,
FLIP_ONE
};
struct trx_flips {
uint8_t tx_flip : 1;
uint8_t rx_flip_any : 1;
uint16_t last_rx_crc;
};
enum hdlc_state {
/* Ignore incoming bytes until the delimiter is found. */
HDLC_STATE_UNSYNC,
/* Append incoming bytes to the output buffer. */
HDLC_STATE_FRAME,
/* Found the delimeter when the output buffer was non-empty. */
HDLC_STATE_FRAME_FOUND,
/* Found the escape byte. Append the following byte XORed with 0x20 to the output buffer. */
HDLC_STATE_ESCAPE,
};
struct hdlc_decode_ctx {
enum hdlc_state state;
/* The number of bytes of the current packet that have been decoded so far. */
uint16_t len;
/* The capacity of the buffer to store a decoded packet. */
uint16_t capacity;
};
struct nrf_rpc_uart {
const struct device *uart;
nrf_rpc_tr_receive_handler_t receive_callback;
void *receive_ctx;
const struct nrf_rpc_tr *transport;
/* RX ring buffer populated by UART ISR */
uint8_t rx_buffer[CONFIG_NRF_RPC_UART_RX_RINGBUF_SIZE];
struct ring_buf rx_ringbuf;
/* RX work to consume and decode bytes from RX ring buffer */
struct k_work rx_work;
struct k_work_q rx_workq;
K_KERNEL_STACK_MEMBER(rx_workq_stack, CONFIG_NRF_RPC_UART_RX_THREAD_STACK_SIZE);
/* HDLC ack decoding state */
struct hdlc_decode_ctx rx_ack_ctx;
uint8_t rx_ack[CRC_SIZE];
/* HDLC packet decoding state */
struct hdlc_decode_ctx rx_pkt_ctx;
uint8_t rx_pkt[CONFIG_NRF_RPC_UART_MAX_PACKET_SIZE];
/* Ack waiting semaphore */
struct k_sem ack_sem;
uint16_t ack_payload;
struct k_mutex ack_tx_lock;
struct trx_flips flips;
/* TX lock */
struct k_mutex tx_lock;
};
static void log_hexdump_dbg(const uint8_t *data, size_t length, const char *fmt, ...)
{
if (IS_ENABLED(CONFIG_NRF_RPC_TR_LOG_LEVEL_DBG)) {
va_list ap;
char message[32];
va_start(ap, fmt);
vsnprintk(message, sizeof(message), fmt, ap);
va_end(ap);
LOG_HEXDUMP_DBG(data, length, message);
}
}
static void send_byte(const struct device *dev, uint8_t byte);
static void ack_rx(struct nrf_rpc_uart *uart_tr)
{
if (!IS_ENABLED(CONFIG_NRF_RPC_UART_RELIABLE) || uart_tr->rx_ack_ctx.len != CRC_SIZE) {
log_hexdump_dbg(uart_tr->rx_ack, uart_tr->rx_ack_ctx.len, ">>> RX invalid frame");
return;
}
uint16_t rx_ack = sys_get_le16(uart_tr->rx_ack);
LOG_DBG(">>> RX ack %04x", rx_ack);
if (uart_tr->ack_payload != rx_ack) {
LOG_WRN("Received ack %04x but expected %04x", rx_ack, uart_tr->ack_payload);
return;
}
k_sem_give(&uart_tr->ack_sem);
}
static void ack_tx(struct nrf_rpc_uart *uart_tr, uint16_t ack_pld)
{
uint8_t ack[2];
if (!IS_ENABLED(CONFIG_NRF_RPC_UART_RELIABLE)) {
return;
}
sys_put_le16(ack_pld, ack);
k_mutex_lock(&uart_tr->ack_tx_lock, K_FOREVER);
LOG_DBG("<<< TX ack %04x", ack_pld);
uart_poll_out(uart_tr->uart, HDLC_CHAR_DELIMITER);
send_byte(uart_tr->uart, ack[0]);
send_byte(uart_tr->uart, ack[1]);
uart_poll_out(uart_tr->uart, HDLC_CHAR_DELIMITER);
k_mutex_unlock(&uart_tr->ack_tx_lock);
}
static uint16_t tx_flip(struct nrf_rpc_uart *uart_tr, uint16_t crc_val)
{
if (!IS_ENABLED(CONFIG_NRF_RPC_UART_RELIABLE)) {
return crc_val;
}
if (uart_tr->flips.tx_flip == FLIP_ZERO) {
crc_val &= 0x7fffu;
uart_tr->flips.tx_flip = FLIP_ONE;
} else {
crc_val |= 0x8000u;
uart_tr->flips.tx_flip = FLIP_ZERO;
}
return crc_val;
}
static bool rx_flip_check(struct nrf_rpc_uart *uart_tr, uint16_t crc_val)
{
uint16_t last_rx_crc;
if (!IS_ENABLED(CONFIG_NRF_RPC_UART_RELIABLE)) {
return false;
}
last_rx_crc = uart_tr->flips.last_rx_crc;
uart_tr->flips.last_rx_crc = crc_val;
if (uart_tr->flips.rx_flip_any == 1 || last_rx_crc != crc_val) {
uart_tr->flips.rx_flip_any = 0;
return false;
}
return true;
}
static bool crc_compare(uint16_t rx_crc, uint16_t calc_crc)
{
if (IS_ENABLED(CONFIG_NRF_RPC_UART_RELIABLE)) {
return (rx_crc & 0x7fffu) == (calc_crc & 0x7fffu);
}
return rx_crc == calc_crc;
}
static void hdlc_decode_byte(struct hdlc_decode_ctx *ctx, uint8_t *out, uint8_t in)
{
switch (ctx->state) {
case HDLC_STATE_UNSYNC:
if (in == HDLC_CHAR_DELIMITER) {
ctx->len = 0;
ctx->state = HDLC_STATE_FRAME;
}
return;
case HDLC_STATE_FRAME_FOUND:
ctx->len = 0;
ctx->state = HDLC_STATE_FRAME;
__fallthrough;
case HDLC_STATE_FRAME:
if (in == HDLC_CHAR_DELIMITER) {
if (ctx->len > 0) {
ctx->state = HDLC_STATE_FRAME_FOUND;
}
return;
} else if (in == HDLC_CHAR_ESCAPE) {
ctx->state = HDLC_STATE_ESCAPE;
return;
}
break;
case HDLC_STATE_ESCAPE:
in ^= 0x20;
ctx->state = HDLC_STATE_FRAME;
break;
}
if (ctx->len >= ctx->capacity) {
/* Ignore too long frame */
ctx->state = HDLC_STATE_UNSYNC;
return;
}
out[ctx->len++] = in;
}
static void work_handler(struct k_work *work)
{
struct nrf_rpc_uart *uart_tr = CONTAINER_OF(work, struct nrf_rpc_uart, rx_work);
uint8_t *data;
size_t len;
int ret;
uint16_t crc_received = 0;
uint16_t crc_calculated = 0;
while (!ring_buf_is_empty(&uart_tr->rx_ringbuf)) {
len = ring_buf_get_claim(&uart_tr->rx_ringbuf, &data,
CONFIG_NRF_RPC_UART_MAX_PACKET_SIZE);
for (size_t i = 0; i < len; i++) {
hdlc_decode_byte(&uart_tr->rx_pkt_ctx, uart_tr->rx_pkt, data[i]);
if (uart_tr->rx_pkt_ctx.state != HDLC_STATE_FRAME_FOUND) {
continue;
}
/* ACKs are already handled in ISR, so process only normal packets here */
if (uart_tr->rx_pkt_ctx.len <= CRC_SIZE) {
continue;
}
uart_tr->rx_pkt_ctx.len -= CRC_SIZE;
crc_received = sys_get_le16(uart_tr->rx_pkt + uart_tr->rx_pkt_ctx.len);
crc_calculated =
crc16_ccitt(0xffff, uart_tr->rx_pkt, uart_tr->rx_pkt_ctx.len);
log_hexdump_dbg(uart_tr->rx_pkt, uart_tr->rx_pkt_ctx.len,
">>> RX packet %04x", crc_received);
if (!crc_compare(crc_received, crc_calculated)) {
LOG_ERR("Invalid packet CRC: calculated %04x but received %04x",
crc_calculated, crc_received);
continue;
}
ack_tx(uart_tr, crc_received);
if (rx_flip_check(uart_tr, crc_received)) {
LOG_WRN("Duplicate packet %04x", crc_received);
} else {
uart_tr->receive_callback(uart_tr->transport, uart_tr->rx_pkt,
uart_tr->rx_pkt_ctx.len,
uart_tr->receive_ctx);
}
}
ret = ring_buf_get_finish(&uart_tr->rx_ringbuf, len);
if (ret < 0) {
LOG_DBG("Cannot flush ring buffer: %d", ret);
}
}
}
static void decode_ack(struct nrf_rpc_uart *inst, const uint8_t *in, size_t len)
{
for (size_t i = 0; i < len; i++) {
hdlc_decode_byte(&inst->rx_ack_ctx, inst->rx_ack, in[i]);
if (inst->rx_ack_ctx.state == HDLC_STATE_FRAME_FOUND) {
ack_rx(inst);
}
}
}
static void serial_cb(const struct device *uart, void *user_data)
{
struct nrf_rpc_uart *uart_tr = user_data;
uint32_t rx_len;
uint8_t *rx_buffer;
bool new_data = false;
while (uart_irq_update(uart) && uart_irq_rx_ready(uart)) {
rx_len = ring_buf_put_claim(&uart_tr->rx_ringbuf, &rx_buffer,
uart_tr->rx_ringbuf.size);
if (rx_len > 0) {
rx_len = uart_fifo_read(uart, rx_buffer, rx_len);
decode_ack(uart_tr, rx_buffer, rx_len);
int err = ring_buf_put_finish(&uart_tr->rx_ringbuf, rx_len);
(void)err; /*silence the compiler*/
__ASSERT_NO_MSG(err == 0);
if (rx_len <= 0) {
continue;
} else {
new_data = true;
}
} else {
uint8_t dummy;
/* No space in the ring buffer - consume byte. */
LOG_WRN("RX ring buffer full");
rx_len = uart_fifo_read(uart, &dummy, 1);
}
}
if (new_data) {
k_work_submit_to_queue(&uart_tr->rx_workq, &uart_tr->rx_work);
}
}
static int init(const struct nrf_rpc_tr *transport, nrf_rpc_tr_receive_handler_t receive_cb,
void *context)
{
struct nrf_rpc_uart *uart_tr = transport->ctx;
if (uart_tr->transport != NULL) {
return 0;
}
uart_tr->transport = transport;
LOG_DBG("init called");
if (receive_cb == NULL) {
return -NRF_EINVAL;
}
uart_tr->receive_callback = receive_cb;
uart_tr->receive_ctx = context;
if (!device_is_ready(uart_tr->uart)) {
LOG_ERR("UART device not found!");
return -NRF_ENOENT;
}
/* configure interrupt and callback to receive data */
int ret = uart_irq_callback_user_data_set(uart_tr->uart, serial_cb, uart_tr);
if (ret < 0) {
if (ret == -ENOTSUP) {
LOG_ERR("Interrupt-driven UART API support not enabled\n");
} else if (ret == -ENOSYS) {
LOG_ERR("UART device does not support interrupt-driven API\n");
} else {
LOG_ERR("Error setting UART callback: %d\n", ret);
}
return 0;
}
k_mutex_init(&uart_tr->tx_lock);
if (IS_ENABLED(CONFIG_NRF_RPC_UART_RELIABLE)) {
k_mutex_init(&uart_tr->ack_tx_lock);
k_sem_init(&uart_tr->ack_sem, 0, 1);
uart_tr->flips.tx_flip = FLIP_ZERO;
uart_tr->flips.rx_flip_any = 1;
}
k_work_queue_init(&uart_tr->rx_workq);
k_work_queue_start(&uart_tr->rx_workq, uart_tr->rx_workq_stack,
K_THREAD_STACK_SIZEOF(uart_tr->rx_workq_stack), K_PRIO_PREEMPT(0), NULL);
k_work_init(&uart_tr->rx_work, work_handler);
ring_buf_init(&uart_tr->rx_ringbuf, sizeof(uart_tr->rx_buffer), uart_tr->rx_buffer);
uart_tr->rx_pkt_ctx.state = HDLC_STATE_UNSYNC;
uart_tr->rx_pkt_ctx.capacity = sizeof(uart_tr->rx_pkt);
uart_tr->rx_ack_ctx.state = HDLC_STATE_UNSYNC;
uart_tr->rx_ack_ctx.capacity = sizeof(uart_tr->rx_ack);
uart_irq_rx_enable(uart_tr->uart);
return 0;
}
static void send_byte(const struct device *dev, uint8_t byte)
{
if (byte == HDLC_CHAR_DELIMITER || byte == HDLC_CHAR_ESCAPE) {
uart_poll_out(dev, HDLC_CHAR_ESCAPE);
byte ^= 0x20;
}
uart_poll_out(dev, byte);
}
static int send(const struct nrf_rpc_tr *transport, const uint8_t *data, size_t length)
{
uint8_t crc[2];
uint16_t crc_val;
bool acked = true;
struct nrf_rpc_uart *uart_tr = transport->ctx;
k_mutex_lock(&uart_tr->tx_lock, K_FOREVER);
crc_val = crc16_ccitt(0xffff, data, length);
crc_val = tx_flip(uart_tr, crc_val);
log_hexdump_dbg(data, length, "<<< TX packet %04x", crc_val);
#if CONFIG_NRF_RPC_UART_RELIABLE
int attempts = 0;
uart_tr->ack_payload = crc_val;
acked = false;
do {
attempts++;
k_mutex_lock(&uart_tr->ack_tx_lock, K_FOREVER);
k_sem_reset(&uart_tr->ack_sem);
#endif /* CONFIG_NRF_RPC_UART_RELIABLE */
uart_poll_out(uart_tr->uart, HDLC_CHAR_DELIMITER);
for (size_t i = 0; i < length; i++) {
send_byte(uart_tr->uart, data[i]);
}
sys_put_le16(crc_val, crc);
send_byte(uart_tr->uart, crc[0]);
send_byte(uart_tr->uart, crc[1]);
uart_poll_out(uart_tr->uart, HDLC_CHAR_DELIMITER);
#if CONFIG_NRF_RPC_UART_RELIABLE
k_mutex_unlock(&uart_tr->ack_tx_lock);
if (k_sem_take(&uart_tr->ack_sem, K_MSEC(CONFIG_NRF_RPC_UART_ACK_WAITING_TIME)) ==
0) {
acked = true;
LOG_DBG("Acked successfully");
} else {
LOG_WRN("Ack timeout");
}
} while (!acked && attempts < CONFIG_NRF_RPC_UART_TX_ATTEMPTS);
#endif /* CONFIG_NRF_RPC_UART_RELIABLE */
k_free((void *)data);
k_mutex_unlock(&uart_tr->tx_lock);
return acked ? 0 : -EPROTO;
}
static void *tx_buf_alloc(const struct nrf_rpc_tr *transport, size_t *size)
{
void *data = NULL;
data = k_malloc(*size);
if (!data) {
LOG_ERR("Failed to allocate TX buffer");
goto error;
}
return data;
error:
/* It should fail to avoid writing to NULL buffer. */
k_oops();
*size = 0;
return NULL;
}
static void tx_buf_free(const struct nrf_rpc_tr *transport, void *buf)
{
ARG_UNUSED(transport);
k_free(buf);
}
const struct nrf_rpc_tr_api nrf_rpc_uart_service_api = {
.init = init,
.send = send,
.tx_buf_alloc = tx_buf_alloc,
.tx_buf_free = tx_buf_free,
};
#define NRF_RPC_UART_INSTANCE(node_id) _CONCAT(nrf_rpc_inst_, DT_DEP_ORD(node_id))
#define NRF_RPC_UART_TRANSPORT_DEFINE(node_id) \
struct nrf_rpc_uart NRF_RPC_UART_INSTANCE(node_id) = { \
.uart = DEVICE_DT_GET(node_id), \
.receive_callback = NULL, \
.transport = NULL, \
}; \
const struct nrf_rpc_tr NRF_RPC_UART_TRANSPORT(node_id) = { \
.api = &nrf_rpc_uart_service_api, \
.ctx = &NRF_RPC_UART_INSTANCE(node_id), \
};
DT_FOREACH_STATUS_OKAY(nordic_nrf_uarte, NRF_RPC_UART_TRANSPORT_DEFINE);