-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmygap.py
979 lines (774 loc) · 30.3 KB
/
mygap.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
"""
"Semantic aware" Sage interface to GAP
This module, built on top of libgap, enriches the handles to GAP
objects by retrieving their mathematical properties from GAP, and
exposing them to Sage, to make them behave as native Sage objects.
EXAMPLES:
Some initialization::
sage: libgap.LoadPackage("semigroups") # optional - semigroups
#I method installed for Matrix matches more than one declaration
true
sage: from mygap import mygap
Let's construct a handle to a GAP permutation group::
sage: G = mygap.Group(libgap.eval("[(1,2)(3,4), (5,6)]"))
This "semantic" handle is automatically recognized as a finite Sage group::
sage: G in Groups().Finite()
True
and behaves as such::
sage: G.list()
[(), (1,2)(3,4), (5,6), (1,2)(3,4)(5,6)]
sage: G.an_element()
()
sage: G.random_element() # random
(5,6)
sage: s, t = G.group_generators()
sage: s * t
(1,2)(3,4)(5,6)
This handle is actually in the "category of GAP groups"::
sage: G.category()
Category of finite g a p groups
This category, together with its super categories of "GAP monoids",
"GAP magmas", etc, provide wrapper methods that translate the Sage
method calls to the corresponding GAP function calls.
Doing this using a hierarchy of categories allow to implement, for
example, once for all the wrapper method for multiplication (_mul_ ->
Prod) for all multiplicative structures in Sage.
Let's now consider a monoid::
sage: M = mygap.FreeMonoid(2)
sage: M.category()
Category of infinite g a p monoids
sage: m1, m2 = M.monoid_generators()
sage: m1 * m2 * m1 * m2
(m1*m2)^2
We can now mix and match Sage and GAP elements::
sage: C = cartesian_product([M, ZZ])
sage: C.category()
Category of Cartesian products of monoids
sage: C.an_element() # optional - semigroups
(m1, 1)
sage: x = cartesian_product([m1,3])
sage: y = cartesian_product([m2,5])
sage: x*y
(m1*m2, 15)
Here is a quotient monoid::
sage: H = M / [ [ m1^2, m1], [m2^2, m2], [m1*m2*m1, m2*m1*m2]]
sage: H.category()
Category of g a p monoids
sage: H.is_finite()
True
sage: H.cardinality()
6
sage: H._refine_category_()
sage: H.category()
Category of finite g a p monoids
sage: H.list()
[<identity ...>, m1, m2, m1*m2, m2*m1, m1*m2*m1]
Building the Cayley graph does not work because the elements don't
have a normal form. We would need to have the monoid elements
represented in normal form, or the hash function to compute first a
normal form. This problem is not specific to the Sage-GAP interface::
sage: C = H.cayley_graph()
sage: len(C.vertices()) # expecting 6
13
sage: len(C.edges())
12
So we build the Cayley graph from an isomorphic monoid having a normal
form; this is the occasion to showcase the use of a GAP morphism::
sage: phi = H.isomorphism_transformation_monoid()
sage: phi.domain() == H # is?
True
sage: HH = phi.codomain(); HH
<transformation monoid of size 6, degree 6 with 2 generators>
sage: C = HH.cayley_graph()
sage: C.vertices() # random
[Transformation( [ 2, 2, 5, 6, 5, 6 ] ),
Transformation( [ 3, 4, 3, 4, 6, 6 ] ),
IdentityTransformation,
Transformation( [ 4, 4, 6, 6, 6, 6 ] ),
Transformation( [ 5, 6, 5, 6, 6, 6 ] ),
Transformation( [ 6, 6, 6, 6, 6, 6 ] )]
sage: len(C.edges())
12
sage: C.relabel(phi.preimage)
sage: sorted(C.vertices(), key=str)
[<identity ...>, m1, m1*m2, m1*m2*m1, m2, m2*m1]
sage: sorted(C.edges(), key=str)
[(<identity ...>, m1, 0),
(<identity ...>, m2, 1),
(m1*m2*m1, m1*m2*m1, 0),
(m1*m2*m1, m1*m2*m1, 1),
(m1*m2, m1*m2*m1, 0),
(m1*m2, m1*m2, 1),
(m1, m1*m2, 1),
(m1, m1, 0),
(m2*m1, m1*m2*m1, 1),
(m2*m1, m2*m1, 0),
(m2, m2*m1, 0),
(m2, m2, 1)]
More examples of structure computations with finite semigroups::
sage: T = mygap.FullTransformationMonoid(4)
sage: T.structure_description_maximal_subgroups() # optional - semigroups
[ "1", "C2", "S3", "S4" ]
sage: T.j_classes()
[ <Green's D-class: Transformation( [ 1, 1, 1, 1 ] )>,
<Green's D-class: Transformation( [ 1, 1, 1, 2 ] )>,
<Green's D-class: Transformation( [ 1, 1, 2, 3 ] )>,
<Green's D-class: IdentityTransformation> ]
sage: R = T.r_classes()
sage: R
[ <Green's R-class: Transformation( [ 1, 1, 1, 1 ] )>,
...
<Green's R-class: IdentityTransformation> ]
sage: C = R[11]; C
<Green's R-class: Transformation( [ 1, 2, 3, 1 ] )>
sage: C.category()
Category of facade finite g a p greens class
sage: C.cardinality()
24
sage: C.schutzenberger_group() # optional - semigroups
Group([ (1,2,3), (1,2) ])
sage: C[0]
Transformation( [ 1, 2, 3, 1 ] )
sage: C[0].parent()
<full transformation monoid of degree 4>
Let's construct a variety of GAP parents to check that they pass all
the generic tests; this means that they have a chance to behave
reasonably as native Sage parents::
sage: skip = ["_test_pickling", "_test_elements"] # Pickling fails for now
sage: F = mygap.eval("Cyclotomics"); F
Cyclotomics
sage: F in Fields().Infinite().GAP()
True
sage: F.zero() # workaround https://github.com/gap-system/gap/issues/517
0
sage: TestSuite(F).run(skip=skip)
sage: F = mygap.SymmetricGroup(3); F
Sym( [ 1 .. 3 ] )
sage: F.category()
Category of finite g a p groups
sage: TestSuite(F).run(skip=skip)
sage: F = mygap.FiniteField(3); F
GF(3)
sage: F in Fields().Finite().Enumerated().GAP()
True
sage: TestSuite(F).run(skip=skip) # not tested
Exploring functionalities from the Semigroups package::
sage: H.is_r_trivial() # optional - semigroups
True
sage: H.is_l_trivial() # todo: not implemented in Semigroups; see https://bitbucket.org/james-d-mitchell/semigroups/issues/146/
True
sage: classes = H.j_classes(); classes # optional - semigroups
[ <Green's D-class: m1*m2*m1>, <Green's D-class: m1*m2>,
<Green's D-class: m1>, <Green's D-class: m2*m1>,
<Green's D-class: m2>, <Green's D-class: <identity ...>> ]
That's nice::
sage: classes.category() # optional - semigroups
Category of facade finite enumerated g a p sets
sage: c = classes[0]; c # optional - semigroups
<Green's D-class: m1*m2*m1>
sage: c.category() # optional - semigroups
Category of facade finite g a p greens class
sage: pi1, pi2 = H.monoid_generators()
sage: pi1^2 == pi1
True
Apparently not available for this kind of monoids::
sage: H.structure_description_schutzenberger_groups() # todo: not implemented
TODO and design discussions
===========================
- Better support for GAP lists and collections
- Better syntax for naming types / codomains
- fill in gap_category_to_structure from the info provided by @semantic
Vocabulary
----------
- "semantic handle" versus "handle" versus ???
User interface and features
---------------------------
- Keep the handle and the semantic handle separate or together?
- For a Sage object, what should .gap() return: a plain handle or a semantic handle
- For a semantic handle, what should .gap() return? Itself? In which case, we
would systematically use ._libgap_() to retrieve the underlying libgap handle?
- Make it easy for the user to discover GAP methods and access documentation
By tab completion?
On the object itself or on some attribute of it?
H.IsFinite / H.gap.IsFinite / H.gap().IsFinite()
Should the method call return a plain gap handle or a semantic one?
Would we want to be able to call directly gap methods, as in H.IsJTrivial() ?
- In general, do we want to hide the non semantic handles?
- Accessing objects (and not just functions) from the global namespace of gap
For example, the "Cyclotomics" is a GAP object, not a
function. Currently one needs to do::
sage: libgap.eval("Cyclotomics")
Cyclotomics
Would we want instead::
sage: gap.eval("Cyclotomics") # todo: not tested
Cyclotomics
About the category-based approach
---------------------------------
- Pros: very little infrastructure; infrastructure that can be easily
reused by other parents / ...
- Issue: because the GAP interface mixins are part of the category
hierarchy, there can be ambiguity (how often?) between using an
existing generic implementation in Sage and using the GAP interface.
Example: (TODO)
- Choose a good name for the categories:
- Semigroups().GAP()
- Semigroups()._GAP()
And for their repr:
- Category of gap semigroups (ambiguous: semigroups having a gap?)
- Category of semigroups implemented in GAP (long)
- Category of GAP semigroups
Source code organization
------------------------
- Separate file / folder with monkey patching of the main Sage categories?
This makes it handy for automatic generation / maintenance
- Issue: Some duplication in the nested classes requires consistency
betwen nested classes of the main categories and the nested classes
here
- Issue: How to support lazy imports?
- Issue: at this stage, Sage will associate a category C to its GAP
counterpart only if C has been imported, so that the associated
semantic information is inserted in the database
libGAP
------
- Feature: Tracing mode allowing for reproducing the sequence of GAP
instructions corresponding to a sequence of Sage instructions::
sage: libgap.log(True) # todo: not implemented
sage: G = mygap.SymmetricGroup(3)
sage: G.list()
[(), (1,3), (1,2,3), (2,3), (1,3,2), (1,2)]
sage: print libgap.get_log() # todo: not implemented
$sage1 := SymmetricGroup(3);
Size($sage1)
Applications:
- Debugging the interface
- Learning how to do the same computation in GAP
- In case of issue/limitation/..., being able to test if the problem
is in the interface or in GAP, and in the later case to send a
plain GAP scenario to the GAP devs
- Method(s) for calling a GAP function (given by a name) or operator
(given by a string, like "*") on a bunch of handles::
libgap.call("Size", gap_handle)
libgap.call("+", gap_handle, gap_handle)
- Renable Tab completion in "gap" object
- Handling of strings as arguments to functions / methods. The following
is a bit of a pain:
sage: gap.FreeGroup('"a"', '"b"')
Group( [ a, b ] )
I'd rather have GAP string evaluation being done explicitly:
sage: gap.FreeGroup("a", "b") # not tested
sage: gap.eval("a") # not tested
Is there a path for this without breaking backward compatibility?
- Why does GapElement (which can be e.g. a handle to a group) inherit from RingElement?
=> As a workaround to enable arithmetic and coercion ...
Misc TODO
---------
- Merge libgap / mygap
- Merging the code into Sage
"""
import itertools
import textwrap
from recursive_monkey_patch import monkey_patch
from sage.misc.cachefunc import cached_method
from sage.misc.nested_class import nested_pickle
from sage.misc.misc import attrcall
from sage.categories.category import Category
from sage.categories.objects import Objects
from sage.categories.sets_cat import Sets
#from sage.categories.magmas import Magmas
#from sage.categories.additive_semigroups import AdditiveSemigroups
#from sage.categories.additive_groups import AdditiveGroups
#from sage.categories.enumerated_sets import EnumeratedSets
#from sage.categories.modules import Modules
from sage.categories.rings import Rings
from sage.structure.element import Element
from sage.structure.parent import Parent
from sage.libs.gap.libgap import libgap
from sage.libs.gap.element import GapElement
from sage.categories.category_with_axiom import CategoryWithAxiom
from sage.misc.constant_function import ConstantFunction
##############################################################################
# Initialization
##############################################################################
import categories
import sage.categories
import categories.objects
import sage.categories.objects
monkey_patch(categories.objects, sage.categories.objects)
# Workaround until #27911 is merged
# libgap does not know about several functions
# This is a temporary workaround to let some of the tests run
import sage.libs.gap.gap_functions
sage.libs.gap.gap_functions.common_gap_functions.union(
(["FreeMonoid", "IsRTrivial", "GreensJClasses", "GreensRClasses", "GreensLClasses", "GreensDClasses",
"IsField", "FiniteField","LieAlgebra", "FullMatrixAlgebra", "ZmodnZ", "ApplicableMethod",
"GeneratorsOfMonoid", "GeneratorsOfSemigroup",
"GeneratorsOfAlgebra", "AdditiveInverse",
"IsomorphismTransformationMonoid", "LieCentralizer",
"LieNormalizer", "IsLieNilpotent", "IsRestrictedLieAlgebra",
r"\+", r"\-", r"\*", r"\/"
]))
##############################################################################
# Code
##############################################################################
def GAP(gap_handle):
"""
EXAMPLES::
sage: from mygap import GAP
sage: it = GAP(libgap([1,3,2]).Iterator())
sage: for x in it: print(x)
1
3
2
"""
structure = retrieve_structure_of_gap_handle(gap_handle)
return structure.cls(gap_handle, structure.category)
class MyGap(object):
class Function:
def __init__(self, f):
self._f = f
def __call__(self, *args):
return GAP(self._f(*args))
def __getattr__(self, name):
return self.Function(libgap.__getattr__(name))
def __call__(self, *args):
return GAP(libgap(*args))
def eval(self, code):
"""
Return a semantic handle on the result of evaluating ``code`` in GAP.
EXAMPLES::
sage: from mygap import mygap
sage: C = mygap.eval("Cyclotomics"); C
Cyclotomics
sage: C.gap().IsField()
true
sage: C in Fields().Infinite().GAP()
True
"""
return GAP(libgap.eval(code))
mygap = MyGap()
##############################################################################
# Classes for semantic handles
class GAPObject(object):
def __init__(self, gap_handle, category=None):
"""
EXAMPLES::
sage: from mygap import mygap, GAPObject
sage: GAPObject(libgap.FreeGroup(3))
<mygap.GAPObject object at ...>
sage: GAPObject(0)
Traceback (most recent call last):
...
ValueError: Not a handle to a gap object: 0
sage: G = mygap.FreeGroup(3)
sage: G(0)
Traceback (most recent call last):
...
ValueError: Not a handle to a gap object: 0
"""
if not isinstance(gap_handle, GapElement):
raise ValueError("Not a handle to a gap object: %s"%gap_handle)
self._gap = gap_handle
def gap(self):
"""
Return the underlying libgap object.
EXAMPLES::
sage: from mygap import mygap
sage: t = mygap.Transformation([1,3,2])
sage: t1 = t._libgap_(); t1
Transformation( [ 1, 3, 2 ] )
sage: type(t1)
<type 'sage.libs.gap.element.GapElement'>
This hook is used by the ``libgap`` constructor::
sage: t2 = libgap(t); t2
Transformation( [ 1, 3, 2 ] )
sage: l = libgap([t, t, t]); l
[ Transformation( [ 1, 3, 2 ] ), Transformation( [ 1, 3, 2 ] ), Transformation( [ 1, 3, 2 ] ) ]
TESTS:
Both ``t._libgap_()`` and ``libgap(t)`` return the underlying ``libgap`` object::
sage: t1 is t2
True
Currently, ``libgap`` seems to make copies in the above list construction::
sage: l[1] is t1
False
sage: l[1] == t1
True
"""
return self._gap
_libgap_ = gap # TODO: do we want to use ._libgap_() instead of .gap() everywhere?
def _repr_(self):
return repr(self.gap())
__repr__ = _repr_
def _wrap(self, obj):
return GAP(obj)
@cached_method
def __hash__(self):
return hash(self._repr_())
def __cmp__(self, other): # Would be nicer to provide id as sorting key ...
a = id(self)
b = id(other)
return (a > b) - (a < b)
def __eq__(self, other):
"""
Return whether ``self`` and ``other`` are equal.
EXAMPLES::
sage: from mygap import mygap
sage: M = mygap.FreeMonoid(2)
sage: M.category()
Category of infinite g a p monoids
sage: m1, m2 = M.monoid_generators()
sage: m1 == m1
True
sage: m1 == m2
False
sage: m1*m2 == m2*m1
False
sage: m1*m2 == m1*m2
True
sage: H = M / [ [ m1^2, m1], [m2^2, m2], [m1*m2*m1, m2*m1*m2]]
sage: pi1, pi2 = H.monoid_generators()
sage: pi1^2 == pi1
True
sage: pi1*pi2*pi1 == pi2*pi1*pi2
True
TESTS::
sage: M == M
True
sage: M == mygap.FreeMonoid(2)
False
sage: M == 0
False
"""
return self.__class__ is other.__class__ and bool(self.gap().EQ(other.gap()))
def __ne__(self, other):
return not self == other
@nested_pickle
class GAPParent(GAPObject, Parent):
def __init__(self, gap_handle, category=Sets()):
Parent.__init__(self, category=category.GAP())
GAPObject.__init__(self, gap_handle)
#def _element_constructor(self, gap_handle):
# assert isinstance(gap_handle, sage.interfaces.gap.GapElement)
# return self.element_class(self, gap_handle)
def _refine_category_(self, category=None):
if category is None:
structure = retrieve_structure_of_gap_handle(self.gap())
assert structure.cls is GAPParent
category = structure.category
super(GAPParent, self)._refine_category_(category)
class Element(GAPObject, Element):
def __init__(self, parent, gap_handle):
"""
Initialize an element of ``parent``
.. TODO:: make this more robust
"""
#from sage.libs.gap.element import GapElement
#if not isinstance(gap_handle, GapElement):
# raise ValueError("Input not a GAP handle")
Element.__init__(self, parent)
GAPObject.__init__(self, gap_handle)
def forget_parent(self):
return GAP(self.gap())
class GAPMorphism(GAPObject): # TODO: inherit from morphism and move the methods to the categories
@cached_method
def domain(self):
return self._wrap(self.gap().Source())
@cached_method
def codomain(self):
return self._wrap(self.gap().Range())
def __call__(self, x):
return self.codomain()(self.gap().ImageElm(x.gap()))
def preimage(self, y):
return self.domain()(self.gap().PreImageElm(y.gap()))
class GAPIterator(GAPObject):
def __iter__(self):
"""
Return self, as per the iterator protocol.
TESTS::
sage: from mygap import GAPIterator
sage: l = libgap([1,3,2])
sage: it = GAPIterator(l.Iterator())
sage: it.__iter__() is it
True
"""
return self
def __next__(self):
"""
Return the next object of this iterator or raise StopIteration, as
per the iterator protocol.
TESTS::
sage: from mygap import GAPIterator
sage: l = libgap([1,3,2])
sage: it = GAPIterator(l.Iterator())
sage: it.__next__()
1
sage: it.__next__()
3
sage: it.__next__()
2
sage: it.__next__()
Traceback (most recent call last):
...
StopIteration
sage: for x in GAPIterator(l.Iterator()): print(x)
1
3
2
"""
if self.gap().IsDoneIterator():
raise StopIteration
return self.gap().NextIterator()
##############################################################################
# Retrieving the structure (class + category) to use for a semantic
# GAP handle from the properties of the underlying GAP object
class Structure:
"""
A pair class + caegory
"""
def __init__(self, cls, category):
self.cls = cls
self.category = category
def __repr__(self):
return repr((self.category, self.cls))
def add_category(self, category):
"""
Add a category
EXAMPLES::
sage: from mygap import Structure, GAPObject
sage: s = Structure(GAPObject, Objects())
sage: s.add_category(Magmas)
sage: s.category
Category of magmas
sage: s.cls
<class 'mygap.GAPParent'>
"""
assert category is None or issubclass(category, Category)
if not isinstance(category, Category):
category = category.an_instance()
if self.cls is GAPObject and category.is_subcategory(Sets()):
self.cls = GAPParent
self.category &= category
def add_class(self, cls):
"""
EXAMPLES::
sage: from mygap import Structure, GAPObject, GAPMorphism
sage: s = Structure(GAPObject, Objects())
sage: s.add_class(GAPMorphism)
sage: s.category
Category of objects
sage: s.cls
<class 'mygap.GAPMorphism'>
"""
assert issubclass(cls, self.cls)
self.cls = cls
gap_category_to_structure = {
"IsIterator": attrcall("add_class", GAPIterator),
# Cheating a bit: this should be IsMapping, which further requires IsTotal and IsSingleValued
"IsGeneralMapping": attrcall("add_class", GAPMorphism),
}
true_properties_to_structure = {
#"IsGroupAsSemigroup": add_axiom("Inverse"), # Useful?
}
false_properties_to_structure = {
}
def fill_allignment_database(cls):
"""
Fill the database mapping gap categories / properties to their
corresponding (super) Sage categories from the semantic
information stored in the category class
"""
assert issubclass(cls, Category)
gap = cls._semantic.get("gap")
gap_sub = cls._semantic.get("gap_sub", gap)
gap_negation = cls._semantic.get("gap_negation")
if gap_sub is not None:
gap_category_to_structure[gap_sub] = attrcall("add_category", cls)
if gap_negation is not None:
false_properties_to_structure[gap_negation] = attrcall("add_category", cls)
def retrieve_structure_of_gap_handle(self):
"""
Return the category corresponding to the properties and categories
of the handled gap object.
EXAMPLES::
sage: import mygap
sage: F = libgap.FreeGroup(3)
sage: mygap.retrieve_structure_of_gap_handle(F)
(Category of groups, <class 'mygap.GAPParent'>)
sage: mygap.retrieve_structure_of_gap_handle(F.Iterator())
(Category of objects, <class 'mygap.GAPIterator'>)
sage: from mygap import mygap
sage: mygap.FiniteField(3) in Fields().Finite().Enumerated().GAP()
True
sage: mygap.eval("Integers") in Rings().Commutative().GAP().Infinite()
True
sage: mygap.eval("Integers").category()
Join of Category of commutative rings and Category of g a p monoids and Category of commutative g a p magmas and Category of finite dimensional g a p modules with basis over rings and Category of infinite g a p sets
sage: mygap.eval("PositiveIntegers").category()
Category of infinite commutative associative unital additive commutative additive associative distributive g a p magmas and additive magmas
sage: mygap.eval("Cyclotomics") in Fields().Infinite().GAP()
True
"""
structure = Structure(GAPObject, Objects())
gap_categories = [str(cat) for cat in self.CategoriesOfObject()]
for cat in gap_categories:
if cat in gap_category_to_structure:
gap_category_to_structure[cat](structure)
properties = set(str(prop) for prop in self.KnownPropertiesOfObject())
true_properties = set(str(prop) for prop in self.KnownTruePropertiesOfObject())
for prop in properties:
if prop in true_properties:
if prop in gap_category_to_structure:
gap_category_to_structure[prop](structure)
else:
if prop in false_properties_to_structure:
false_properties_to_structure[prop](structure)
# Special cases that can't yet be handled by the infrastructure
# - We don't have the LDistributive and RDistributive
# axioms, and the current infrastructure does not allow to make a
# "and" on two axioms "IsLDistributive": "Distributive"
if "IsLDistributive" in true_properties and "IsRDistributive" in true_properties:
# Work around: C._with_axiom("Distributive") does not work
structure.category = structure.category.Distributive()
if "IsMagmaWithInversesIfNonzero" in gap_categories and structure.category.is_subcategory(Rings()):
structure.category = structure.category.Division()
return structure
##############################################################################
# `typing` extensions to cast from a GAP handle
from sage_annotations.misc import sage_typing as typing
def Any_from_handle(self, handle):
import mygap
return mygap.GAP(handle)
typing.Any.__class__.from_handle = Any_from_handle
def GenericAlias_from_handle(self, handle):
"""
sage: import typing, mygap
sage: t = typing.List[int]
sage: t.from_handle((1,2,3))
[1, 2, 3]
"""
container_type = self.__origin__
if self.__args__ is None:
return container_type(handle)
if hasattr(container_type, "from_handle"):
return container_type.from_handle(self, handle)
value_type = from_handle(self.__args__[0])
return container_type(value_type(x) for x in handle)
typing._GenericAlias.from_handle = GenericAlias_from_handle
def Facade_from_handle(self, handle):
value_type = self.__args__[0]
import mygap
result = mygap.GAP(handle)
result._refine_category_(result.category().Facade())
result.facade_for = ConstantFunction(value_type)
return result
typing.Facade.from_handle = Facade_from_handle
def Iterator_from_handle(self, handle):
value_type = from_handle(self.__args__[0])
import mygap
return map(value_type, mygap.GAPIterator(handle))
typing.Iterator.from_handle = Iterator_from_handle
def from_handle(type):
if hasattr(type, "from_handle"):
return type.from_handle
else:
return type
##############################################################################
def gap_handle(x):
"""
Return a low-level libgap handle to the corresponding GAP object.
EXAMPLES::
sage: from mygap import mygap, gap_handle
sage: h = libgap.GF(3)
sage: F = mygap(h)
sage: gap_handle(F) is h
True
sage: l = gap_handle([1,2,F])
sage: l
[ 1, 2, GF(3) ]
sage: l[0] == 1
True
sage: l[2] == h
True
.. TODO::
Maybe we just want, for x a glorified hand, libgap(x) to
return the corresponding low level handle
"""
from mygap import GAPObject
if isinstance(x, (list, tuple)):
return libgap([gap_handle(y) for y in x])
elif isinstance(x, GAPObject):
return x.gap()
else:
return libgap(x)
##############################################################################
nested_classes_of_categories = [
"ParentMethods",
"ElementMethods",
"MorphismMethods",
"SubcategoryMethods",
]
def mmt_lookup_signature(*args):
raise NotImplementedError
def generate_code(name, semantic):
codomain = semantic.get("codomain")
arity = semantic.get("arity")
gap_name = semantic.get("gap")
mmt_name = semantic.get("mmt")
mmt_theory = semantic.get("mmt_theory")
if gap_name is None: # codomain is None
signature = None
if mmt_name is not None:
signature = mmt_lookup_signature(mmt_theory, mmt_name)
if signature is not None:
domains, codomain = signature
if arity is None:
arity = len(domains)
else:
arity == len(domains)
# TODO: cleanup this logic
if all(domain == codomain for domain in domains):
codomain = typing.ParentOfSelf
#assert self.codomain is None or codomain == self.codomain
assert arity is not None
assert gap_name is not None
if codomain is None:
codomain = typing.Any
#assert isinstance(codomain, DependentType)
def wrapper_method(self, *args):
return from_handle(typing.specialize(codomain, self))(getattr(libgap, gap_name)(*gap_handle((self,)+args)))
wrapper_method.__name__ = name
wrapper_method.__doc__ = textwrap.dedent("""
Wrapper around GAP's method {}
arity: {}
codomain: {}
""").format(gap_name, arity, codomain)
return wrapper_method
# Generate the GAP class
def generate_GAP_subcategory_class(cls):
if not hasattr(cls, "_semantic"):
return
try:
# Can't use cls.GAP because of the binding behavior
GAP_cls = cls.__dict__['GAP']
except KeyError:
GAP_cls = type(cls.__name__+".GAP", (CategoryWithAxiom,), {})
GAP_cls.__module__ = cls.__module__
setattr(cls, 'GAP', GAP_cls)
# Recurse in nested classes
for name in nested_classes_of_categories:
try:
source = getattr(cls, name)
semantic = getattr(source, "_semantic")
except AttributeError:
continue
# Fetch the corresponding class in cls.GAP, creating it if needed
try:
target = getattr(GAP_cls, name)
except AttributeError:
target = type(name, (), {})
setattr(GAP_cls, name, target)
for (key, semantic) in semantic.items():
setattr(target, key, generate_code(key, semantic))
# TODO: add a hook so that categories annotated later on get aligned
for cls in typing.annotated_categories:
fill_allignment_database(cls)
generate_GAP_subcategory_class(cls)