forked from elizaOS/eliza
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsearch.ts
326 lines (270 loc) · 11.7 KB
/
search.ts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
import { SearchMode } from "agent-twitter-client";
import {composeContext, elizaLogger} from "@elizaos/core";
import { generateMessageResponse, generateText } from "@elizaos/core";
import { messageCompletionFooter } from "@elizaos/core";
import {
Content,
HandlerCallback,
IAgentRuntime,
IImageDescriptionService,
ModelClass,
ServiceType,
State,
} from "@elizaos/core";
import { stringToUuid } from "@elizaos/core";
import { ClientBase } from "./base";
import { buildConversationThread, sendTweet, wait } from "./utils.ts";
const twitterSearchTemplate =
`{{timeline}}
{{providers}}
Recent interactions between {{agentName}} and other users:
{{recentPostInteractions}}
About {{agentName}} (@{{twitterUserName}}):
{{bio}}
{{lore}}
{{topics}}
{{postDirections}}
{{recentPosts}}
# Task: Respond to the following post in the style and perspective of {{agentName}} (aka @{{twitterUserName}}). Write a {{adjective}} response for {{agentName}} to say directly in response to the post. don't generalize.
{{currentPost}}
IMPORTANT: Your response CANNOT be longer than 20 words.
Aim for 1-2 short sentences maximum. Be concise and direct.
Your response should not contain any questions. Brief, concise statements only. No emojis. Use \\n\\n (double spaces) between statements.
` + messageCompletionFooter;
export class TwitterSearchClient {
client: ClientBase;
runtime: IAgentRuntime;
twitterUsername: string;
private respondedTweets: Set<string> = new Set();
constructor(client: ClientBase, runtime: IAgentRuntime) {
this.client = client;
this.runtime = runtime;
this.twitterUsername = runtime.getSetting("TWITTER_USERNAME");
}
async start() {
this.engageWithSearchTermsLoop();
}
private engageWithSearchTermsLoop() {
this.engageWithSearchTerms().then();
const randomMinutes = (Math.floor(Math.random() * (120 - 60 + 1)) + 60);
elizaLogger.log(`Next twitter search scheduled in ${randomMinutes} minutes`);
setTimeout(
() => this.engageWithSearchTermsLoop(),
randomMinutes * 60 * 1000
);
}
private async engageWithSearchTerms() {
console.log("Engaging with search terms");
try {
const searchTerm = [...this.runtime.character.topics][
Math.floor(Math.random() * this.runtime.character.topics.length)
];
console.log("Fetching search tweets");
// TODO: we wait 5 seconds here to avoid getting rate limited on startup, but we should queue
await new Promise((resolve) => setTimeout(resolve, 5000));
const recentTweets = await this.client.fetchSearchTweets(
searchTerm,
20,
SearchMode.Top
);
console.log("Search tweets fetched");
const homeTimeline = await this.client.fetchHomeTimeline(50);
await this.client.cacheTimeline(homeTimeline);
const formattedHomeTimeline =
`# ${this.runtime.character.name}'s Home Timeline\n\n` +
homeTimeline
.map((tweet) => {
return `ID: ${tweet.id}\nFrom: ${tweet.name} (@${tweet.username})${tweet.inReplyToStatusId ? ` In reply to: ${tweet.inReplyToStatusId}` : ""}\nText: ${tweet.text}\n---\n`;
})
.join("\n");
// randomly slice .tweets down to 20
const slicedTweets = recentTweets.tweets
.sort(() => Math.random() - 0.5)
.slice(0, 20);
if (slicedTweets.length === 0) {
console.log(
"No valid tweets found for the search term",
searchTerm
);
return;
}
const prompt = `
Here are some tweets related to the search term "${searchTerm}":
${[...slicedTweets, ...homeTimeline]
.filter((tweet) => {
// ignore tweets where any of the thread tweets contain a tweet by the bot
const thread = tweet.thread;
const botTweet = thread.find(
(t) => t.username === this.twitterUsername
);
return !botTweet;
})
.map(
(tweet) => `
ID: ${tweet.id}${tweet.inReplyToStatusId ? ` In reply to: ${tweet.inReplyToStatusId}` : ""}
From: ${tweet.name} (@${tweet.username})
Text: ${tweet.text}
`
)
.join("\n")}
Which tweet is the most interesting and relevant for Ruby to reply to? Please provide only the ID of the tweet in your response.
Notes:
- Respond to English tweets only
- Respond to tweets that don't have a lot of hashtags, links, URLs or images
- Respond to tweets that are not retweets
- Respond to tweets where there is an easy exchange of ideas to have with the user
- ONLY respond with the ID of the tweet`;
const mostInterestingTweetResponse = await generateText({
runtime: this.runtime,
context: prompt,
modelClass: ModelClass.SMALL,
});
const tweetId = mostInterestingTweetResponse.trim();
const selectedTweet = slicedTweets.find(
(tweet) =>
tweet.id.toString().includes(tweetId) ||
tweetId.includes(tweet.id.toString())
);
if (!selectedTweet) {
console.log("No matching tweet found for the selected ID");
return console.log("Selected tweet ID:", tweetId);
}
console.log("Selected tweet to reply to:", selectedTweet?.text);
if (selectedTweet.username === this.twitterUsername) {
console.log("Skipping tweet from bot itself");
return;
}
const conversationId = selectedTweet.conversationId;
const roomId = stringToUuid(
conversationId + "-" + this.runtime.agentId
);
const userIdUUID = stringToUuid(selectedTweet.userId as string);
await this.runtime.ensureConnection(
userIdUUID,
roomId,
selectedTweet.username,
selectedTweet.name,
"twitter"
);
// crawl additional conversation tweets, if there are any
await buildConversationThread(selectedTweet, this.client);
const message = {
id: stringToUuid(selectedTweet.id + "-" + this.runtime.agentId),
agentId: this.runtime.agentId,
content: {
text: selectedTweet.text,
url: selectedTweet.permanentUrl,
inReplyTo: selectedTweet.inReplyToStatusId
? stringToUuid(
selectedTweet.inReplyToStatusId +
"-" +
this.runtime.agentId
)
: undefined,
},
userId: userIdUUID,
roomId,
// Timestamps are in seconds, but we need them in milliseconds
createdAt: selectedTweet.timestamp * 1000,
};
if (!message.content.text) {
return { text: "", action: "IGNORE" };
}
// Fetch replies and retweets
const replies = selectedTweet.thread;
const replyContext = replies
.filter((reply) => reply.username !== this.twitterUsername)
.map((reply) => `@${reply.username}: ${reply.text}`)
.join("\n");
let tweetBackground = "";
if (selectedTweet.isRetweet) {
const originalTweet = await this.client.requestQueue.add(() =>
this.client.twitterClient.getTweet(selectedTweet.id)
);
tweetBackground = `Retweeting @${originalTweet.username}: ${originalTweet.text}`;
}
// Generate image descriptions using GPT-4 vision API
const imageDescriptions = [];
for (const photo of selectedTweet.photos) {
const description = await this.runtime
.getService<IImageDescriptionService>(
ServiceType.IMAGE_DESCRIPTION
)
.describeImage(photo.url);
imageDescriptions.push(description);
}
let state = await this.runtime.composeState(message, {
twitterClient: this.client.twitterClient,
twitterUserName: this.twitterUsername,
timeline: formattedHomeTimeline,
tweetContext: `${tweetBackground}
Original Post:
By @${selectedTweet.username}
${selectedTweet.text}${replyContext.length > 0 && `\nReplies to original post:\n${replyContext}`}
${`Original post text: ${selectedTweet.text}`}
${selectedTweet.urls.length > 0 ? `URLs: ${selectedTweet.urls.join(", ")}\n` : ""}${imageDescriptions.length > 0 ? `\nImages in Post (Described): ${imageDescriptions.join(", ")}\n` : ""}
`,
});
await this.client.saveRequestMessage(message, state as State);
const context = composeContext({
state,
template:
this.runtime.character.templates?.twitterSearchTemplate ||
twitterSearchTemplate,
});
const responseContent = await generateMessageResponse({
runtime: this.runtime,
context,
modelClass: ModelClass.LARGE,
});
responseContent.inReplyTo = message.id;
const response = responseContent;
if (!response.text) {
console.log("Returning: No response text found");
return;
}
console.log(
`Bot would respond to tweet ${selectedTweet.id} with: ${response.text}`
);
try {
const callback: HandlerCallback = async (response: Content) => {
const memories = await sendTweet(
this.client,
response,
message.roomId,
this.twitterUsername,
tweetId
);
return memories;
};
const responseMessages = await callback(responseContent);
state = await this.runtime.updateRecentMessageState(state);
for (const responseMessage of responseMessages) {
await this.runtime.messageManager.createMemory(
responseMessage,
false
);
}
state = await this.runtime.updateRecentMessageState(state);
await this.runtime.evaluate(message, state);
await this.runtime.processActions(
message,
responseMessages,
state,
callback
);
this.respondedTweets.add(selectedTweet.id);
const responseInfo = `Context:\n\n${context}\n\nSelected Post: ${selectedTweet.id} - ${selectedTweet.username}: ${selectedTweet.text}\nAgent's Output:\n${response.text}`;
await this.runtime.cacheManager.set(
`twitter/tweet_generation_${selectedTweet.id}.txt`,
responseInfo
);
await wait();
} catch (error) {
console.error(`Error sending response post: ${error}`);
}
} catch (error) {
console.error("Error engaging with search terms:", error);
}
}
}