-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathalign_db.py
139 lines (102 loc) · 4.11 KB
/
align_db.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import os
import gentle
import pandas as pd
import codecs
import logging
def on_progress(p):
for k,v in p.items():
logging.debug("%s: %s" % (k, v))
# DOWNLOAD THE DB AND CHANGE THIS PATH
path='path/to/EmoV-DB_sorted/'
resources = gentle.Resources()
def load_emov_db(path_to_EmoV_DB):
transcript = os.path.join(path_to_EmoV_DB, 'cmuarctic.data')
lines = codecs.open(transcript, 'r', 'utf-8').readlines()
# in our database, we use only files beginning with arctic_a. And the number of these sentences correspond.
# Here we build a dataframe with number and text of each of these lines
sentences = []
for line in lines:
temp = {}
idx_n_0 = line.find('arctic_a') + len('arctic_a')
if line.find('arctic_a') != -1:
print(line)
print(idx_n_0)
idx_n_end = idx_n_0 + 4
number = line[idx_n_0:idx_n_end]
print(number)
temp['n'] = number
idx_text_0 = idx_n_end + 2
text = line.strip()[idx_text_0:-3]
temp['text'] = text
# print(text)
sentences.append(temp)
sentences = pd.DataFrame(sentences)
print(sentences)
speakers=next(os.walk(path_to_EmoV_DB))[1] #this list directories (and not files, contrary to osl.listdir() )
data=[]
for spk in speakers:
emo_cat = next(os.walk(os.path.join(path_to_EmoV_DB,spk)))[1] #this list directories (and not files, contrary to osl.listdir() )
for emo in emo_cat:
for file in os.listdir(os.path.join(path_to_EmoV_DB, spk, emo)):
print(file)
fpath = os.path.join(path_to_EmoV_DB, spk, emo, file)
if file[-4:] == '.wav':
fnumber = file[-8:-4]
print(fnumber)
if fnumber.isdigit():
text = sentences[sentences['n'] == fnumber]['text'].iloc[0] # result must be a string and not a df with a single element
# text_lengths.append(len(text))
# texts.append(text)
# texts.append(np.array(text, np.int32).tostring())
# fpaths.append(fpath)
# emo_cats.append(emo)
e = {'database': 'EmoV-DB',
'id': file[:-4],
'speaker': spk,
'emotion':emo,
'transcription': text,
'sentence_path': fpath}
data.append(e)
print(e)
data = pd.DataFrame.from_records(data)
return data
def align_db(data):
import pathlib
for i, row in data.iterrows():
f = row.sentence_path
transcript = row.transcription
with gentle.resampled(f) as wavfile:
aligner = gentle.ForcedAligner(resources, transcript)
result = aligner.transcribe(wavfile, progress_cb=on_progress, logging=logging)
# os.system('python align.py '+f+' words.txt -o test.json')
output = os.path.join('alignments', '/'.join(f.split('/')[-4:]).split('.')[0] + '.json')
pathlib.Path('/'.join(output.split('/')[0:-1])).mkdir(parents=True, exist_ok=True)
fh = open(output, 'w')
fh.write(result.to_json(indent=2))
if output:
logging.info("output written to %s" % (output))
fh.close()
data=load_emov_db(path)
align_db(data)
def get_start_end_from_json(path):
a=pd.read_json(os.path.join('file://localhost', os.path.abspath(path)))
b=pd.DataFrame.from_records(a.words)
print('start:')
start=b.start[0]
print(start)
print('end:')
end=b.end.round(2).tolist()[-1]
print(end)
return start, end
# path='alignments/EmoV-DB/bea/amused/amused_1-15_0001.json'
# start, end=get_start_end_from_json(path)
def play_start_end(path, start, end):
import sounddevice as sd
import librosa
y,fs=librosa.load(path)
sd.play(y[int(start*fs):int(end*fs)],fs)
def play(path):
import sounddevice as sd
import librosa
y,fs=librosa.load(path)
sd.play(y,fs)