forked from elizaOS/eliza
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgeneration.ts
728 lines (661 loc) · 25.5 KB
/
generation.ts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
import { createAnthropic } from "@ai-sdk/anthropic";
import { createGroq } from "@ai-sdk/groq";
import { createOpenAI } from "@ai-sdk/openai";
import { getModel } from "./models.ts";
import { IImageDescriptionService, ModelClass } from "./types.ts";
import { generateText as aiGenerateText } from "ai";
import { Buffer } from "buffer";
import { createOllama } from "ollama-ai-provider";
import OpenAI from "openai";
import { default as tiktoken, TiktokenModel } from "tiktoken";
import Together from "together-ai";
import { elizaLogger } from "./index.ts";
import models from "./models.ts";
import {
parseBooleanFromText,
parseJsonArrayFromText,
parseJSONObjectFromText,
parseShouldRespondFromText,
} from "./parsing.ts";
import settings from "./settings.ts";
import {
Content,
IAgentRuntime,
ITextGenerationService,
ModelProviderName,
ServiceType,
} from "./types.ts";
/**
* Send a message to the model for a text generateText - receive a string back and parse how you'd like
* @param opts - The options for the generateText request.
* @param opts.context The context of the message to be completed.
* @param opts.stop A list of strings to stop the generateText at.
* @param opts.model The model to use for generateText.
* @param opts.frequency_penalty The frequency penalty to apply to the generateText.
* @param opts.presence_penalty The presence penalty to apply to the generateText.
* @param opts.temperature The temperature to apply to the generateText.
* @param opts.max_context_length The maximum length of the context to apply to the generateText.
* @returns The completed message.
*/
export async function generateText({
runtime,
context,
modelClass,
stop,
}: {
runtime: IAgentRuntime;
context: string;
modelClass: string;
stop?: string[];
}): Promise<string> {
if (!context) {
console.error("generateText context is empty");
return "";
}
const provider = runtime.modelProvider;
const endpoint =
runtime.character.modelEndpointOverride || models[provider].endpoint;
const model = models[provider].model[modelClass];
const temperature = models[provider].settings.temperature;
const frequency_penalty = models[provider].settings.frequency_penalty;
const presence_penalty = models[provider].settings.presence_penalty;
const max_context_length = models[provider].settings.maxInputTokens;
const max_response_length = models[provider].settings.maxOutputTokens;
const apiKey = runtime.token;
try {
elizaLogger.log(
`Trimming context to max length of ${max_context_length} tokens.`
);
context = await trimTokens(context, max_context_length, "gpt-4o");
let response: string;
const _stop = stop || models[provider].settings.stop;
elizaLogger.log(
`Using provider: ${provider}, model: ${model}, temperature: ${temperature}, max response length: ${max_response_length}`
);
switch (provider) {
case ModelProviderName.OPENAI:
case ModelProviderName.LLAMACLOUD: {
elizaLogger.log("Initializing OpenAI model.");
const openai = createOpenAI({ apiKey, baseURL: endpoint });
const { text: openaiResponse } = await aiGenerateText({
model: openai.languageModel(model),
prompt: context,
system:
runtime.character.system ??
settings.SYSTEM_PROMPT ??
undefined,
temperature: temperature,
maxTokens: max_response_length,
frequencyPenalty: frequency_penalty,
presencePenalty: presence_penalty,
});
response = openaiResponse;
elizaLogger.log("Received response from OpenAI model.");
break;
}
case ModelProviderName.ANTHROPIC: {
elizaLogger.log("Initializing Anthropic model.");
const anthropic = createAnthropic({ apiKey });
const { text: anthropicResponse } = await aiGenerateText({
model: anthropic.languageModel(model),
prompt: context,
system:
runtime.character.system ??
settings.SYSTEM_PROMPT ??
undefined,
temperature: temperature,
maxTokens: max_response_length,
frequencyPenalty: frequency_penalty,
presencePenalty: presence_penalty,
});
response = anthropicResponse;
elizaLogger.log("Received response from Anthropic model.");
break;
}
case ModelProviderName.GROK: {
elizaLogger.log("Initializing Grok model.");
const grok = createOpenAI({ apiKey, baseURL: endpoint });
const { text: grokResponse } = await aiGenerateText({
model: grok.languageModel(model, {
parallelToolCalls: false,
}),
prompt: context,
system:
runtime.character.system ??
settings.SYSTEM_PROMPT ??
undefined,
temperature: temperature,
maxTokens: max_response_length,
frequencyPenalty: frequency_penalty,
presencePenalty: presence_penalty,
});
response = grokResponse;
elizaLogger.log("Received response from Grok model.");
break;
}
case ModelProviderName.GROQ: {
console.log("Initializing Groq model.");
const groq = createGroq({ apiKey });
const { text: groqResponse } = await aiGenerateText({
model: groq.languageModel(model),
prompt: context,
temperature: temperature,
system:
runtime.character.system ??
settings.SYSTEM_PROMPT ??
undefined,
maxTokens: max_response_length,
frequencyPenalty: frequency_penalty,
presencePenalty: presence_penalty,
});
response = groqResponse;
console.log("Received response from Groq model.");
break;
}
case ModelProviderName.LLAMALOCAL: {
elizaLogger.log("Using local Llama model for text completion.");
response = await runtime
.getService<ITextGenerationService>(
ServiceType.TEXT_GENERATION
)
.queueTextCompletion(
context,
temperature,
_stop,
frequency_penalty,
presence_penalty,
max_response_length
);
elizaLogger.log("Received response from local Llama model.");
break;
}
case ModelProviderName.REDPILL: {
elizaLogger.log("Initializing RedPill model.");
const serverUrl = models[provider].endpoint;
const openai = createOpenAI({ apiKey, baseURL: serverUrl });
const { text: openaiResponse } = await aiGenerateText({
model: openai.languageModel(model),
prompt: context,
temperature: temperature,
system:
runtime.character.system ??
settings.SYSTEM_PROMPT ??
undefined,
maxTokens: max_response_length,
frequencyPenalty: frequency_penalty,
presencePenalty: presence_penalty,
});
response = openaiResponse;
elizaLogger.log("Received response from OpenAI model.");
break;
}
case ModelProviderName.OPENROUTER: {
elizaLogger.log("Initializing OpenRouter model.");
const serverUrl = models[provider].endpoint;
const openrouter = createOpenAI({ apiKey, baseURL: serverUrl });
const { text: openrouterResponse } = await aiGenerateText({
model: openrouter.languageModel(model),
prompt: context,
temperature: temperature,
system:
runtime.character.system ??
settings.SYSTEM_PROMPT ??
undefined,
maxTokens: max_response_length,
frequencyPenalty: frequency_penalty,
presencePenalty: presence_penalty,
});
response = openrouterResponse;
elizaLogger.log("Received response from OpenRouter model.");
break;
}
case ModelProviderName.OLLAMA:
{
console.log("Initializing Ollama model.");
const ollamaProvider = createOllama({
baseURL: models[provider].endpoint + "/api",
});
const ollama = ollamaProvider(model);
console.log("****** MODEL\n", model);
const { text: ollamaResponse } = await aiGenerateText({
model: ollama,
prompt: context,
temperature: temperature,
maxTokens: max_response_length,
frequencyPenalty: frequency_penalty,
presencePenalty: presence_penalty,
});
response = ollamaResponse;
}
console.log("Received response from Ollama model.");
break;
default: {
const errorMessage = `Unsupported provider: ${provider}`;
elizaLogger.error(errorMessage);
throw new Error(errorMessage);
}
}
return response;
} catch (error) {
elizaLogger.error("Error in generateText:", error);
throw error;
}
}
/**
* Truncate the context to the maximum length allowed by the model.
* @param model The model to use for generateText.
* @param context The context of the message to be completed.
* @param max_context_length The maximum length of the context to apply to the generateText.
* @returns
*/
export function trimTokens(context, maxTokens, model) {
// Count tokens and truncate context if necessary
const encoding = tiktoken.encoding_for_model(model as TiktokenModel);
let tokens = encoding.encode(context);
const textDecoder = new TextDecoder();
if (tokens.length > maxTokens) {
tokens = tokens.reverse().slice(maxTokens).reverse();
context = textDecoder.decode(encoding.decode(tokens));
}
return context;
}
/**
* Sends a message to the model to determine if it should respond to the given context.
* @param opts - The options for the generateText request
* @param opts.context The context to evaluate for response
* @param opts.stop A list of strings to stop the generateText at
* @param opts.model The model to use for generateText
* @param opts.frequency_penalty The frequency penalty to apply (0.0 to 2.0)
* @param opts.presence_penalty The presence penalty to apply (0.0 to 2.0)
* @param opts.temperature The temperature to control randomness (0.0 to 2.0)
* @param opts.serverUrl The URL of the API server
* @param opts.max_context_length Maximum allowed context length in tokens
* @param opts.max_response_length Maximum allowed response length in tokens
* @returns Promise resolving to "RESPOND", "IGNORE", "STOP" or null
*/
export async function generateShouldRespond({
runtime,
context,
modelClass,
}: {
runtime: IAgentRuntime;
context: string;
modelClass: string;
}): Promise<"RESPOND" | "IGNORE" | "STOP" | null> {
let retryDelay = 1000;
while (true) {
try {
elizaLogger.log(
"Attempting to generate text with context:",
context
);
const response = await generateText({
runtime,
context,
modelClass,
});
elizaLogger.log("Received response from generateText:", response);
const parsedResponse = parseShouldRespondFromText(response.trim());
if (parsedResponse) {
elizaLogger.log("Parsed response:", parsedResponse);
return parsedResponse;
} else {
elizaLogger.log("generateShouldRespond no response");
}
} catch (error) {
elizaLogger.error("Error in generateShouldRespond:", error);
if (
error instanceof TypeError &&
error.message.includes("queueTextCompletion")
) {
elizaLogger.error(
"TypeError: Cannot read properties of null (reading 'queueTextCompletion')"
);
}
}
elizaLogger.log(`Retrying in ${retryDelay}ms...`);
await new Promise((resolve) => setTimeout(resolve, retryDelay));
retryDelay *= 2;
}
}
/**
* Splits content into chunks of specified size with optional overlapping bleed sections
* @param content - The text content to split into chunks
* @param chunkSize - The maximum size of each chunk in tokens
* @param bleed - Number of characters to overlap between chunks (default: 100)
* @param model - The model name to use for tokenization (default: runtime.model)
* @returns Promise resolving to array of text chunks with bleed sections
*/
export async function splitChunks(
runtime,
content: string,
chunkSize: number,
bleed: number = 100,
modelClass: string
): Promise<string[]> {
const model = runtime.model[modelClass];
const encoding = tiktoken.encoding_for_model(
model.model.embedding as TiktokenModel
);
const tokens = encoding.encode(content);
const chunks: string[] = [];
const textDecoder = new TextDecoder();
for (let i = 0; i < tokens.length; i += chunkSize) {
const chunk = tokens.slice(i, i + chunkSize);
const decodedChunk = textDecoder.decode(encoding.decode(chunk));
// Append bleed characters from the previous chunk
const startBleed = i > 0 ? content.slice(i - bleed, i) : "";
// Append bleed characters from the next chunk
const endBleed =
i + chunkSize < tokens.length
? content.slice(i + chunkSize, i + chunkSize + bleed)
: "";
chunks.push(startBleed + decodedChunk + endBleed);
}
return chunks;
}
/**
* Sends a message to the model and parses the response as a boolean value
* @param opts - The options for the generateText request
* @param opts.context The context to evaluate for the boolean response
* @param opts.stop A list of strings to stop the generateText at
* @param opts.model The model to use for generateText
* @param opts.frequency_penalty The frequency penalty to apply (0.0 to 2.0)
* @param opts.presence_penalty The presence penalty to apply (0.0 to 2.0)
* @param opts.temperature The temperature to control randomness (0.0 to 2.0)
* @param opts.serverUrl The URL of the API server
* @param opts.token The API token for authentication
* @param opts.max_context_length Maximum allowed context length in tokens
* @param opts.max_response_length Maximum allowed response length in tokens
* @returns Promise resolving to a boolean value parsed from the model's response
*/
export async function generateTrueOrFalse({
runtime,
context = "",
modelClass,
}: {
runtime: IAgentRuntime;
context: string;
modelClass: string;
}): Promise<boolean> {
let retryDelay = 1000;
console.log("modelClass", modelClass)
const stop = Array.from(
new Set([...(models[runtime.modelProvider].settings.stop || []), ["\n"]])
) as string[];
while (true) {
try {
const response = await generateText({
stop,
runtime,
context,
modelClass,
});
const parsedResponse = parseBooleanFromText(response.trim());
if (parsedResponse !== null) {
return parsedResponse;
}
} catch (error) {
elizaLogger.error("Error in generateTrueOrFalse:", error);
}
await new Promise((resolve) => setTimeout(resolve, retryDelay));
retryDelay *= 2;
}
}
/**
* Send a message to the model and parse the response as a string array
* @param opts - The options for the generateText request
* @param opts.context The context/prompt to send to the model
* @param opts.stop Array of strings that will stop the model's generation if encountered
* @param opts.model The language model to use
* @param opts.frequency_penalty The frequency penalty to apply (0.0 to 2.0)
* @param opts.presence_penalty The presence penalty to apply (0.0 to 2.0)
* @param opts.temperature The temperature to control randomness (0.0 to 2.0)
* @param opts.serverUrl The URL of the API server
* @param opts.token The API token for authentication
* @param opts.max_context_length Maximum allowed context length in tokens
* @param opts.max_response_length Maximum allowed response length in tokens
* @returns Promise resolving to an array of strings parsed from the model's response
*/
export async function generateTextArray({
runtime,
context,
modelClass,
}: {
runtime: IAgentRuntime;
context: string;
modelClass: string;
}): Promise<string[]> {
if (!context) {
elizaLogger.error("generateTextArray context is empty");
return [];
}
let retryDelay = 1000;
while (true) {
try {
const response = await generateText({
runtime,
context,
modelClass,
});
const parsedResponse = parseJsonArrayFromText(response);
if (parsedResponse) {
return parsedResponse;
}
} catch (error) {
elizaLogger.error("Error in generateTextArray:", error);
}
await new Promise((resolve) => setTimeout(resolve, retryDelay));
retryDelay *= 2;
}
}
export async function generateObject({
runtime,
context,
modelClass,
}: {
runtime: IAgentRuntime;
context: string;
modelClass: string;
}): Promise<any> {
if (!context) {
elizaLogger.error("generateObject context is empty");
return null;
}
let retryDelay = 1000;
while (true) {
try {
// this is slightly different than generateObjectArray, in that we parse object, not object array
const response = await generateText({
runtime,
context,
modelClass,
});
const parsedResponse = parseJSONObjectFromText(response);
if (parsedResponse) {
return parsedResponse;
}
} catch (error) {
elizaLogger.error("Error in generateObject:", error);
}
await new Promise((resolve) => setTimeout(resolve, retryDelay));
retryDelay *= 2;
}
}
export async function generateObjectArray({
runtime,
context,
modelClass,
}: {
runtime: IAgentRuntime;
context: string;
modelClass: string;
}): Promise<any[]> {
if (!context) {
elizaLogger.error("generateObjectArray context is empty");
return [];
}
let retryDelay = 1000;
while (true) {
try {
const response = await generateText({
runtime,
context,
modelClass,
});
const parsedResponse = parseJsonArrayFromText(response);
if (parsedResponse) {
return parsedResponse;
}
} catch (error) {
elizaLogger.error("Error in generateTextArray:", error);
}
await new Promise((resolve) => setTimeout(resolve, retryDelay));
retryDelay *= 2;
}
}
/**
* Send a message to the model for generateText.
* @param opts - The options for the generateText request.
* @param opts.context The context of the message to be completed.
* @param opts.stop A list of strings to stop the generateText at.
* @param opts.model The model to use for generateText.
* @param opts.frequency_penalty The frequency penalty to apply to the generateText.
* @param opts.presence_penalty The presence penalty to apply to the generateText.
* @param opts.temperature The temperature to apply to the generateText.
* @param opts.max_context_length The maximum length of the context to apply to the generateText.
* @returns The completed message.
*/
export async function generateMessageResponse({
runtime,
context,
modelClass,
}: {
runtime: IAgentRuntime;
context: string;
modelClass: string;
}): Promise<Content> {
const max_context_length =
models[runtime.modelProvider].settings.maxInputTokens;
context = trimTokens(context, max_context_length, "gpt-4o");
let retryLength = 1000; // exponential backoff
while (true) {
try {
const response = await generateText({
runtime,
context,
modelClass,
});
// try parsing the response as JSON, if null then try again
const parsedContent = parseJSONObjectFromText(response) as Content;
if (!parsedContent) {
elizaLogger.log("parsedContent is null, retrying");
continue;
}
return parsedContent;
} catch (error) {
elizaLogger.error("ERROR:", error);
// wait for 2 seconds
retryLength *= 2;
await new Promise((resolve) => setTimeout(resolve, retryLength));
elizaLogger.log("Retrying...");
}
}
}
export const generateImage = async (
data: {
prompt: string;
width: number;
height: number;
count?: number;
},
runtime: IAgentRuntime
): Promise<{
success: boolean;
data?: string[];
error?: any;
}> => {
const { prompt, width, height } = data;
let { count } = data;
if (!count) {
count = 1;
}
const model = getModel(runtime.character.modelProvider, ModelClass.IMAGE);
const modelSettings = models[runtime.character.modelProvider].imageSettings;
// some fallbacks for backwards compat, should remove in the future
const apiKey =
runtime.token ??
runtime.getSetting("TOGETHER_API_KEY") ??
runtime.getSetting("OPENAI_API_KEY");
try {
if (runtime.character.modelProvider === ModelProviderName.LLAMACLOUD) {
const together = new Together({ apiKey: apiKey as string });
const response = await together.images.create({
model: "black-forest-labs/FLUX.1-schnell",
prompt,
width,
height,
steps: modelSettings?.steps ?? 4,
n: count,
});
const urls: string[] = [];
for (let i = 0; i < response.data.length; i++) {
const json = response.data[i].b64_json;
// decode base64
const base64 = Buffer.from(json, "base64").toString("base64");
urls.push(base64);
}
const base64s = await Promise.all(
urls.map(async (url) => {
const response = await fetch(url);
const blob = await response.blob();
const buffer = await blob.arrayBuffer();
let base64 = Buffer.from(buffer).toString("base64");
base64 = "data:image/jpeg;base64," + base64;
return base64;
})
);
return { success: true, data: base64s };
} else {
let targetSize = `${width}x${height}`;
if (
targetSize !== "1024x1024" &&
targetSize !== "1792x1024" &&
targetSize !== "1024x1792"
) {
targetSize = "1024x1024";
}
const openai = new OpenAI({ apiKey: apiKey as string });
const response = await openai.images.generate({
model,
prompt,
size: targetSize as "1024x1024" | "1792x1024" | "1024x1792",
n: count,
response_format: "b64_json",
});
const base64s = response.data.map(
(image) => `data:image/png;base64,${image.b64_json}`
);
return { success: true, data: base64s };
}
} catch (error) {
console.error(error);
return { success: false, error: error };
}
};
export const generateCaption = async (
data: { imageUrl: string },
runtime: IAgentRuntime
): Promise<{
title: string;
description: string;
}> => {
const { imageUrl } = data;
const resp = await runtime
.getService<IImageDescriptionService>(ServiceType.IMAGE_DESCRIPTION)
.describeImage(imageUrl);
return {
title: resp.title.trim(),
description: resp.description.trim(),
};
};