You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
| redis-vector-db | redis/redis-stack:7.2.0-v9 | No | Acts as a Redis database for storing and managing data. |
260
260
| dataprep-redis-service | opea/dataprep:latest| No | Prepares data and interacts with the Redis database. |
261
-
| tei-embedding-service | ghcr.io/huggingface/text-embeddings-inference:cpu-1.5| No | Provides text embedding services, often using Hugging Face models. |
261
+
| tei-embedding-service | ghcr.io/huggingface/text-embeddings-inference:cpu-1.6| No | Provides text embedding services, often using Hugging Face models. |
262
262
| retriever | opea/retriever:latest| No | Retrieves data from the Redis database and interacts with embedding services. |
263
263
| tei-reranking-service | ghcr.io/huggingface/tei-gaudi:1.5.0 | Yes | Reranks text embeddings, typically using Gaudi hardware for enhanced performance. |
264
264
| vllm-service | opea/vllm-gaudi:latest| No | Handles large language model (LLM) tasks, utilizing Gaudi hardware. |
@@ -284,7 +284,7 @@ ChatQnA now supports running the latest DeepSeek models, including [deepseek-ai/
284
284
285
285
### tei-embedding-service & tei-reranking-service
286
286
287
-
The `ghcr.io/huggingface/text-embeddings-inference:cpu-1.5` image supporting `tei-embedding-service` and `tei-reranking-service` depends on the `EMBEDDING_MODEL_ID` or `RERANK_MODEL_ID` environment variables respectively to specify the embedding model and reranking model used for converting text into vector representations and rankings. This choice impacts the quality and relevance of the embeddings rerankings for various applications. Unlike the `vllm-service`, the `tei-embedding-service` and `tei-reranking-service` each typically acquires only one Gaudi device and does not use the `NUM_CARDS` parameter; embedding and reranking tasks generally do not require extensive parallel processing and one Gaudi per service is appropriate. The list of [supported embedding and reranking models](https://github.com/huggingface/tei-gaudi?tab=readme-ov-file#supported-models) can be found at the the [huggingface/tei-gaudi](https://github.com/huggingface/tei-gaudi?tab=readme-ov-file#supported-models) website.
287
+
The `ghcr.io/huggingface/text-embeddings-inference:cpu-1.6` image supporting `tei-embedding-service` and `tei-reranking-service` depends on the `EMBEDDING_MODEL_ID` or `RERANK_MODEL_ID` environment variables respectively to specify the embedding model and reranking model used for converting text into vector representations and rankings. This choice impacts the quality and relevance of the embeddings rerankings for various applications. Unlike the `vllm-service`, the `tei-embedding-service` and `tei-reranking-service` each typically acquires only one Gaudi device and does not use the `NUM_CARDS` parameter; embedding and reranking tasks generally do not require extensive parallel processing and one Gaudi per service is appropriate. The list of [supported embedding and reranking models](https://github.com/huggingface/tei-gaudi?tab=readme-ov-file#supported-models) can be found at the the [huggingface/tei-gaudi](https://github.com/huggingface/tei-gaudi?tab=readme-ov-file#supported-models) website.
0 commit comments