-
Notifications
You must be signed in to change notification settings - Fork 200
/
Copy pathpphumanseg.py
69 lines (51 loc) · 2.29 KB
/
pphumanseg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
# This file is part of OpenCV Zoo project.
# It is subject to the license terms in the LICENSE file found in the same directory.
#
# Copyright (C) 2021, Shenzhen Institute of Artificial Intelligence and Robotics for Society, all rights reserved.
# Third party copyrights are property of their respective owners.
import numpy as np
import cv2 as cv
class PPHumanSeg:
def __init__(self, modelPath, backendId=0, targetId=0):
self._modelPath = modelPath
self._backendId = backendId
self._targetId = targetId
self._model = cv.dnn.readNet(self._modelPath)
self._model.setPreferableBackend(self._backendId)
self._model.setPreferableTarget(self._targetId)
self._inputNames = ''
self._outputNames = ['save_infer_model/scale_0.tmp_1']
self._currentInputSize = None
self._inputSize = [192, 192]
self._mean = np.array([0.5, 0.5, 0.5])[np.newaxis, np.newaxis, :]
self._std = np.array([0.5, 0.5, 0.5])[np.newaxis, np.newaxis, :]
@property
def name(self):
return self.__class__.__name__
def setBackendAndTarget(self, backendId, targetId):
self._backendId = backendId
self._targetId = targetId
self._model.setPreferableBackend(self._backendId)
self._model.setPreferableTarget(self._targetId)
def _preprocess(self, image):
image = cv.cvtColor(image, cv.COLOR_BGR2RGB)
self._currentInputSize = image.shape
image = cv.resize(image, (192, 192))
image = image.astype(np.float32, copy=False) / 255.0
image -= self._mean
image /= self._std
return cv.dnn.blobFromImage(image)
def infer(self, image):
# Preprocess
inputBlob = self._preprocess(image)
# Forward
self._model.setInput(inputBlob, self._inputNames)
outputBlob = self._model.forward()
# Postprocess
results = self._postprocess(outputBlob)
return results
def _postprocess(self, outputBlob):
outputBlob = outputBlob[0]
outputBlob = cv.resize(outputBlob.transpose(1,2,0), (self._currentInputSize[1], self._currentInputSize[0]), interpolation=cv.INTER_LINEAR).transpose(2,0,1)[np.newaxis, ...]
result = np.argmax(outputBlob, axis=1).astype(np.uint8)
return result