-
Notifications
You must be signed in to change notification settings - Fork 200
/
Copy pathlpd_yunet.py
133 lines (109 loc) · 4.67 KB
/
lpd_yunet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
from itertools import product
import numpy as np
import cv2 as cv
class LPD_YuNet:
def __init__(self, modelPath, inputSize=[320, 240], confThreshold=0.8, nmsThreshold=0.3, topK=5000, keepTopK=750, backendId=0, targetId=0):
self.model_path = modelPath
self.input_size = np.array(inputSize)
self.confidence_threshold=confThreshold
self.nms_threshold = nmsThreshold
self.top_k = topK
self.keep_top_k = keepTopK
self.backend_id = backendId
self.target_id = targetId
self.output_names = ['loc', 'conf', 'iou']
self.min_sizes = [[10, 16, 24], [32, 48], [64, 96], [128, 192, 256]]
self.steps = [8, 16, 32, 64]
self.variance = [0.1, 0.2]
# load model
self.model = cv.dnn.readNet(self.model_path)
# generate anchors/priorboxes
self._priorGen()
@property
def name(self):
return self.__class__.__name__
def setBackendAndTarget(self, backendId, targetId):
self.backend_id = backendId
self.target_id = targetId
self.model.setPreferableBackend(self.backend_id)
self.model.setPreferableTarget(self.target_id)
def setInputSize(self, inputSize):
self.input_size = inputSize
# re-generate anchors/priorboxes
self._priorGen()
def _preprocess(self, image):
return cv.dnn.blobFromImage(image)
def infer(self, image):
assert image.shape[0] == self.input_size[1], '{} (height of input image) != {} (preset height)'.format(image.shape[0], self.input_size[1])
assert image.shape[1] == self.input_size[0], '{} (width of input image) != {} (preset width)'.format(image.shape[1], self.input_size[0])
# Preprocess
inputBlob = self._preprocess(image)
# Forward
self.model.setInput(inputBlob)
outputBlob = self.model.forward(self.output_names)
# Postprocess
results = self._postprocess(outputBlob)
return results
def _postprocess(self, blob):
# Decode
dets = self._decode(blob)
# NMS
keepIdx = cv.dnn.NMSBoxes(
bboxes=dets[:, 0:4].tolist(),
scores=dets[:, -1].tolist(),
score_threshold=self.confidence_threshold,
nms_threshold=self.nms_threshold,
top_k=self.top_k
) # box_num x class_num
if len(keepIdx) > 0:
dets = dets[keepIdx]
return dets[:self.keep_top_k]
else:
return np.empty(shape=(0, 9))
def _priorGen(self):
w, h = self.input_size
feature_map_2th = [int(int((h + 1) / 2) / 2),
int(int((w + 1) / 2) / 2)]
feature_map_3th = [int(feature_map_2th[0] / 2),
int(feature_map_2th[1] / 2)]
feature_map_4th = [int(feature_map_3th[0] / 2),
int(feature_map_3th[1] / 2)]
feature_map_5th = [int(feature_map_4th[0] / 2),
int(feature_map_4th[1] / 2)]
feature_map_6th = [int(feature_map_5th[0] / 2),
int(feature_map_5th[1] / 2)]
feature_maps = [feature_map_3th, feature_map_4th,
feature_map_5th, feature_map_6th]
priors = []
for k, f in enumerate(feature_maps):
min_sizes = self.min_sizes[k]
for i, j in product(range(f[0]), range(f[1])): # i->h, j->w
for min_size in min_sizes:
s_kx = min_size / w
s_ky = min_size / h
cx = (j + 0.5) * self.steps[k] / w
cy = (i + 0.5) * self.steps[k] / h
priors.append([cx, cy, s_kx, s_ky])
self.priors = np.array(priors, dtype=np.float32)
def _decode(self, blob):
loc, conf, iou = blob
# get score
cls_scores = conf[:, 1]
iou_scores = iou[:, 0]
# clamp
_idx = np.where(iou_scores < 0.)
iou_scores[_idx] = 0.
_idx = np.where(iou_scores > 1.)
iou_scores[_idx] = 1.
scores = np.sqrt(cls_scores * iou_scores)
scores = scores[:, np.newaxis]
scale = self.input_size
# get four corner points for bounding box
bboxes = np.hstack((
(self.priors[:, 0:2] + loc[:, 4: 6] * self.variance[0] * self.priors[:, 2:4]) * scale,
(self.priors[:, 0:2] + loc[:, 6: 8] * self.variance[0] * self.priors[:, 2:4]) * scale,
(self.priors[:, 0:2] + loc[:, 10:12] * self.variance[0] * self.priors[:, 2:4]) * scale,
(self.priors[:, 0:2] + loc[:, 12:14] * self.variance[0] * self.priors[:, 2:4]) * scale
))
dets = np.hstack((bboxes, scores))
return dets