-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #10 from openproblems-bio/segm_m_binning
binning method
- Loading branch information
Showing
2 changed files
with
94 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,36 @@ | ||
name: binning | ||
label: "Binning Segmentation" | ||
summary: "Segment the spatial data into equidistant square bins" | ||
description: "The binning method for segmentation serves as a baseline of a poor segmentation" | ||
links: | ||
documentation: "https://github.com/openproblems-bio/task_ist_preprocessing" | ||
repository: "https://github.com/openproblems-bio/task_ist_preprocessing" | ||
references: | ||
doi: "10.1101/2023.02.13.528102" | ||
|
||
__merge__: /src/api/comp_method_segmentation.yaml | ||
|
||
arguments: | ||
- name: --bin_size | ||
type: integer | ||
default: 30 | ||
|
||
resources: | ||
- type: python_script | ||
path: script.py | ||
|
||
engines: | ||
- type: docker | ||
image: openproblems/base_python:1.0.0 | ||
setup: | ||
- type: python | ||
pypi: spatialdata | ||
__merge__: | ||
- /src/base/setup_txsim_partial.yaml | ||
- type: native | ||
|
||
runners: | ||
- type: executable | ||
- type: nextflow | ||
directives: | ||
label: [ midtime, lowcpu, lowmem ] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,58 @@ | ||
import txsim as tx | ||
import numpy as np | ||
import os | ||
import yaml | ||
import spatialdata as sd | ||
import anndata as ad | ||
import shutil | ||
import numpy as np | ||
from spatialdata.models import Labels2DModel | ||
import xarray as xr | ||
|
||
|
||
|
||
def convert_to_lower_dtype(arr): | ||
max_val = arr.max() | ||
if max_val <= np.iinfo(np.uint8).max: | ||
new_dtype = np.uint8 | ||
elif max_val <= np.iinfo(np.uint16).max: | ||
new_dtype = np.uint16 | ||
elif max_val <= np.iinfo(np.uint32).max: | ||
new_dtype = np.uint32 | ||
else: | ||
new_dtype = np.uint64 | ||
|
||
return arr.astype(new_dtype) | ||
|
||
## VIASH START | ||
par = { | ||
"input": "../task_ist_preprocessing/resources_test/common/2023_10x_mouse_brain_xenium/dataset.zarr", | ||
"output": "segmentation.zarr" | ||
} | ||
|
||
## VIASH END | ||
|
||
hyperparameters = par.copy() | ||
|
||
hyperparameters = {k:(v if v != "None" else None) for k,v in hyperparameters.items()} | ||
del hyperparameters['input'] | ||
del hyperparameters['output'] | ||
|
||
sdata = sd.read_zarr(par["input"]) | ||
image = sdata['morphology_mip']['scale0'].image.compute().to_numpy() | ||
transformation = sdata['morphology_mip']['scale0'].image.transform.copy() | ||
|
||
sd_output = sd.SpatialData() | ||
image = sdata['morphology_mip']['scale0'].image.compute().to_numpy() | ||
transformation = sdata['morphology_mip']['scale0'].image.transform.copy() | ||
img_arr = tx.preprocessing.segment_binning(image[0], hyperparameters['bin_size']) ### TOdo find the optimal bin_size | ||
image = convert_to_lower_dtype(img_arr) | ||
data_array = xr.DataArray(image, name=f'segmentation', dims=('y', 'x')) | ||
parsed_data = Labels2DModel.parse(data_array, transformations=transformation) | ||
sd_output.labels['segmentation'] = parsed_data | ||
|
||
print("Writing output", flush=True) | ||
if os.path.exists(par["output"]): | ||
shutil.rmtree(par["output"]) | ||
sd_output.write(par["output"]) | ||
|