Skip to content

Commit 9e32a2d

Browse files
authored
Merge pull request #10 from openproblems-bio/segm_m_binning
binning method
2 parents 7f6c798 + 98fa8ee commit 9e32a2d

File tree

2 files changed

+94
-0
lines changed

2 files changed

+94
-0
lines changed
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,36 @@
1+
name: binning
2+
label: "Binning Segmentation"
3+
summary: "Segment the spatial data into equidistant square bins"
4+
description: "The binning method for segmentation serves as a baseline of a poor segmentation"
5+
links:
6+
documentation: "https://github.com/openproblems-bio/task_ist_preprocessing"
7+
repository: "https://github.com/openproblems-bio/task_ist_preprocessing"
8+
references:
9+
doi: "10.1101/2023.02.13.528102"
10+
11+
__merge__: /src/api/comp_method_segmentation.yaml
12+
13+
arguments:
14+
- name: --bin_size
15+
type: integer
16+
default: 30
17+
18+
resources:
19+
- type: python_script
20+
path: script.py
21+
22+
engines:
23+
- type: docker
24+
image: openproblems/base_python:1.0.0
25+
setup:
26+
- type: python
27+
pypi: spatialdata
28+
__merge__:
29+
- /src/base/setup_txsim_partial.yaml
30+
- type: native
31+
32+
runners:
33+
- type: executable
34+
- type: nextflow
35+
directives:
36+
label: [ midtime, lowcpu, lowmem ]
+58
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,58 @@
1+
import txsim as tx
2+
import numpy as np
3+
import os
4+
import yaml
5+
import spatialdata as sd
6+
import anndata as ad
7+
import shutil
8+
import numpy as np
9+
from spatialdata.models import Labels2DModel
10+
import xarray as xr
11+
12+
13+
14+
def convert_to_lower_dtype(arr):
15+
max_val = arr.max()
16+
if max_val <= np.iinfo(np.uint8).max:
17+
new_dtype = np.uint8
18+
elif max_val <= np.iinfo(np.uint16).max:
19+
new_dtype = np.uint16
20+
elif max_val <= np.iinfo(np.uint32).max:
21+
new_dtype = np.uint32
22+
else:
23+
new_dtype = np.uint64
24+
25+
return arr.astype(new_dtype)
26+
27+
## VIASH START
28+
par = {
29+
"input": "../task_ist_preprocessing/resources_test/common/2023_10x_mouse_brain_xenium/dataset.zarr",
30+
"output": "segmentation.zarr"
31+
}
32+
33+
## VIASH END
34+
35+
hyperparameters = par.copy()
36+
37+
hyperparameters = {k:(v if v != "None" else None) for k,v in hyperparameters.items()}
38+
del hyperparameters['input']
39+
del hyperparameters['output']
40+
41+
sdata = sd.read_zarr(par["input"])
42+
image = sdata['morphology_mip']['scale0'].image.compute().to_numpy()
43+
transformation = sdata['morphology_mip']['scale0'].image.transform.copy()
44+
45+
sd_output = sd.SpatialData()
46+
image = sdata['morphology_mip']['scale0'].image.compute().to_numpy()
47+
transformation = sdata['morphology_mip']['scale0'].image.transform.copy()
48+
img_arr = tx.preprocessing.segment_binning(image[0], hyperparameters['bin_size']) ### TOdo find the optimal bin_size
49+
image = convert_to_lower_dtype(img_arr)
50+
data_array = xr.DataArray(image, name=f'segmentation', dims=('y', 'x'))
51+
parsed_data = Labels2DModel.parse(data_array, transformations=transformation)
52+
sd_output.labels['segmentation'] = parsed_data
53+
54+
print("Writing output", flush=True)
55+
if os.path.exists(par["output"]):
56+
shutil.rmtree(par["output"])
57+
sd_output.write(par["output"])
58+

0 commit comments

Comments
 (0)