|
| 1 | +import txsim as tx |
| 2 | +import numpy as np |
| 3 | +import os |
| 4 | +import yaml |
| 5 | +import spatialdata as sd |
| 6 | +import anndata as ad |
| 7 | +import shutil |
| 8 | +import numpy as np |
| 9 | +from spatialdata.models import Labels2DModel |
| 10 | +import xarray as xr |
| 11 | + |
| 12 | + |
| 13 | + |
| 14 | +def convert_to_lower_dtype(arr): |
| 15 | + max_val = arr.max() |
| 16 | + if max_val <= np.iinfo(np.uint8).max: |
| 17 | + new_dtype = np.uint8 |
| 18 | + elif max_val <= np.iinfo(np.uint16).max: |
| 19 | + new_dtype = np.uint16 |
| 20 | + elif max_val <= np.iinfo(np.uint32).max: |
| 21 | + new_dtype = np.uint32 |
| 22 | + else: |
| 23 | + new_dtype = np.uint64 |
| 24 | + |
| 25 | + return arr.astype(new_dtype) |
| 26 | + |
| 27 | +## VIASH START |
| 28 | +par = { |
| 29 | + "input": "../task_ist_preprocessing/resources_test/common/2023_10x_mouse_brain_xenium/dataset.zarr", |
| 30 | + "output": "segmentation.zarr" |
| 31 | +} |
| 32 | + |
| 33 | +## VIASH END |
| 34 | + |
| 35 | +hyperparameters = par.copy() |
| 36 | + |
| 37 | +hyperparameters = {k:(v if v != "None" else None) for k,v in hyperparameters.items()} |
| 38 | +del hyperparameters['input'] |
| 39 | +del hyperparameters['output'] |
| 40 | + |
| 41 | +sdata = sd.read_zarr(par["input"]) |
| 42 | +image = sdata['morphology_mip']['scale0'].image.compute().to_numpy() |
| 43 | +transformation = sdata['morphology_mip']['scale0'].image.transform.copy() |
| 44 | + |
| 45 | +sd_output = sd.SpatialData() |
| 46 | +image = sdata['morphology_mip']['scale0'].image.compute().to_numpy() |
| 47 | +transformation = sdata['morphology_mip']['scale0'].image.transform.copy() |
| 48 | +img_arr = tx.preprocessing.segment_binning(image[0], hyperparameters['bin_size']) ### TOdo find the optimal bin_size |
| 49 | +image = convert_to_lower_dtype(img_arr) |
| 50 | +data_array = xr.DataArray(image, name=f'segmentation', dims=('y', 'x')) |
| 51 | +parsed_data = Labels2DModel.parse(data_array, transformations=transformation) |
| 52 | +sd_output.labels['segmentation'] = parsed_data |
| 53 | + |
| 54 | +print("Writing output", flush=True) |
| 55 | +if os.path.exists(par["output"]): |
| 56 | + shutil.rmtree(par["output"]) |
| 57 | +sd_output.write(par["output"]) |
| 58 | + |
0 commit comments