forked from uxlfoundation/oneDNN
-
Notifications
You must be signed in to change notification settings - Fork 46
/
Copy pathrnn_reorders.hpp
966 lines (839 loc) · 39.4 KB
/
rnn_reorders.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
/*******************************************************************************
* Copyright 2018-2025 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
#ifndef CPU_RNN_RNN_REORDERS_HPP
#define CPU_RNN_RNN_REORDERS_HPP
#include <assert.h>
#include "common/bfloat16.hpp"
#include "common/dnnl_thread.hpp"
#include "common/primitive.hpp"
#include "common/type_helpers.hpp"
#include "common/utils.hpp"
#include "cpu/platform.hpp"
#include "cpu/reorder/cpu_reorder_pd.hpp"
#include "cpu/simple_q10n.hpp"
#include "cpu/gemm/gemm_pack.hpp"
namespace dnnl {
namespace impl {
namespace cpu {
static inline void init_dims(dim_t &L, dim_t &D, dim_t &I, dim_t &G, dim_t &O,
const memory_desc_wrapper &mdw) {
const auto dims = mdw.dims();
const auto ndims = mdw.ndims();
L = dims[0];
D = dims[1];
I = dims[2];
G = 0;
O = 0;
// weights_layer/weights_iter case
if (ndims == 5) {
G = dims[3];
O = dims[4];
}
// projection weights case
if (ndims == 4) {
G = 1;
O = dims[3];
}
assert(G != 0 && O != 0);
};
template <data_type_t type_i>
static inline void quantize_igo(int8_t *scratch_quantized,
const memory_desc_wrapper &src_d, const float *src, int mask,
float *scales) {
typedef typename prec_traits<type_i>::type in_data_t;
// TODO: trivial strides assumes here.
// Use proper strides where appropriate
dim_t L, D, I, G, O;
init_dims(L, D, I, G, O, src_d);
assert(scales != nullptr);
parallel(0, [&](const int ithr, const int nthr) {
dim_t start {0}, end {0};
balance211(L * D * I, nthr, ithr, start, end);
for (int ldi = start; ldi < end; ldi++) {
for (int go = 0; go < G * O; go++) {
const float s = scales[(mask == 0) ? 0 : go];
scratch_quantized[ldi * G * O + go]
= q10n::qz_b0<in_data_t, int8_t>()(
src[ldi * G * O + go], s);
}
}
});
}
template <data_type_t type_i>
static inline void quantize_goi(int8_t *scratch_quantized,
const memory_desc_wrapper &src_d, const float *src, int mask,
float *scales) {
typedef typename prec_traits<type_i>::type in_data_t;
// TODO: trivial strides assumes here.
// Use proper strides where appropriate
dim_t L, D, I, G, O;
init_dims(L, D, I, G, O, src_d);
assert(scales != nullptr);
parallel_nd(L * D, G * O, [&](dim_t ld, dim_t go) {
const float s = scales[(mask == 0) ? 0 : go];
PRAGMA_OMP_SIMD()
for (dim_t i = 0; i < I; i++) {
scratch_quantized[ld * I * G * O + i * G * O + go]
= q10n::qz_b0<in_data_t, int8_t>()(
src[ld * G * O * I + go * I + i], s);
}
});
}
static inline void compensate_igo(float *compensation,
const memory_desc_wrapper &src_d, int8_t *scratch_quantized,
int32_t *scratch_compensation, size_t scratch_comp_sz, int nthr) {
// TODO: trivial strides assumed here.
// Use proper strides where appropriate
dim_t L, D, I, G, O;
init_dims(L, D, I, G, O, src_d);
// We parallelize on LD and GO
// TODO: maybe restrict parallelism as we might have large
// parallelisation overhead if dimensions are small
const int LD_nthr = nstl::min(L * D, dim_t(nthr));
const int GO_nthr = nstl::min(G * O, dim_t(nthr / LD_nthr));
parallel(nthr, [&](const int ithr, const int nthr) {
int LD_ithr = -1;
int GO_ithr = -1;
dim_t LD_s = -1, LD_e = -1;
dim_t GO_s = -1, GO_e = -1;
if (ithr < LD_nthr * GO_nthr) {
LD_ithr = ithr % LD_nthr;
GO_ithr = ithr / LD_nthr;
balance211(L * D, LD_nthr, LD_ithr, LD_s, LD_e);
balance211(G * O, GO_nthr, GO_ithr, GO_s, GO_e);
}
int32_t *compensation_s32
= scratch_compensation + ithr * scratch_comp_sz;
for (int ld = LD_s; ld < LD_e; ld++) {
if (I == 1) {
PRAGMA_OMP_SIMD()
for (int go = GO_s; go < GO_e; go++)
compensation[ld * G * O + go] = q10n::saturate<float>(
scratch_quantized[ld * I * G * O + go]);
} else {
// We split the loop on I in three to avoid conditionals or zeroing compensation
int i = 0;
PRAGMA_OMP_SIMD()
for (int go = GO_s; go < GO_e; go++)
compensation_s32[go]
= scratch_quantized[go + G * O * (i + I * (ld))];
// 1 <= i < I-1
for (i = 1; i < I - 1; i++) {
PRAGMA_OMP_SIMD()
for (int go = GO_s; go < GO_e; go++)
compensation_s32[go] += scratch_quantized[go
+ G * O * (i + I * (ld))];
}
// i = I-1
PRAGMA_OMP_SIMD()
for (int go = GO_s; go < GO_e; go++)
compensation[ld * G * O + go] = q10n::saturate<float>(
compensation_s32[go]
+ scratch_quantized[go + G * O * (i + I * (ld))]);
}
}
});
}
static inline void compensate_goi(float *compensation,
const memory_desc_wrapper &src_d, int8_t *scratch_quantized) {
// TODO: trivial strides assumed here.
// Use proper strides where appropriate
dim_t L, D, I, G, O;
init_dims(L, D, I, G, O, src_d);
parallel_nd(L * D, G * O, [&](dim_t ld, dim_t go) {
int32_t compensation_s32 = 0;
PRAGMA_OMP_SIMD()
for (dim_t i = 0; i < I; i++) {
compensation_s32
+= scratch_quantized[ld * I * G * O + i * G * O + go];
}
// TODO: do not convert to f32 if this compensation is not
// going to be added to a bias (e.g. like in lstm
// projection where it is directly added to the s32
// accumulators)
compensation[ld * G * O + go] = q10n::saturate<float>(compensation_s32);
});
}
template <data_type_t type_i, data_type_t type_o>
struct rnn_data_reorder_t : public primitive_t {
struct pd_t : public cpu_reorder_pd_t {
using cpu_reorder_pd_t::cpu_reorder_pd_t;
DECLARE_COMMON_PD_T("rnn_data_reorder", rnn_data_reorder_t);
private:
static status_t create(reorder_pd_t **reorder_pd, engine_t *engine,
const primitive_attr_t *attr, engine_t *src_engine,
const memory_desc_t *src_md, engine_t *dst_engine,
const memory_desc_t *dst_md) {
using namespace format_tag;
using namespace status;
const memory_desc_wrapper id(src_md), od(dst_md);
bool args_ok = impl::is_dense_format_kind({src_md, dst_md});
#define PD_CHECK_ARG(x) args_ok = args_ok && (x)
PD_CHECK_ARG(id.data_type() == type_i);
PD_CHECK_ARG(od.data_type() == type_o);
PD_CHECK_ARG(utils::one_of(id.ndims(), 3, 4));
PD_CHECK_ARG(!id.has_runtime_dims_or_strides());
auto skip_mask = primitive_attr_t::skip_mask_t::rnn_data_qparams
| primitive_attr_t::skip_mask_t::rnn_weights_qparams
| primitive_attr_t::skip_mask_t::
rnn_weights_projection_qparams;
PD_CHECK_ARG(attr->has_default_values(skip_mask));
PD_CHECK_ARG(IMPLICATION(id.ndims() == 3,
id.matches_tag(tnc) && od.matches_tag(tnc)));
PD_CHECK_ARG(IMPLICATION(id.ndims() == 4,
id.matches_tag(ldnc) && od.matches_tag(ldnc)));
#undef PD_CHECK_ARG
if (!args_ok) return invalid_arguments;
auto _pd = make_unique_pd<pd_t>(attr, src_engine->kind(), src_md,
dst_engine->kind(), dst_md);
if (_pd == nullptr) return out_of_memory;
CHECK(_pd->init(engine, src_engine, dst_engine));
CHECK(_pd->init_scratchpad_md());
return safe_ptr_assign(*reorder_pd, _pd.release());
}
friend dnnl::impl::impl_list_item_t;
};
rnn_data_reorder_t(const pd_t *apd) : primitive_t(apd) {}
private:
typedef typename prec_traits<type_i>::type in_data_t;
typedef typename prec_traits<type_o>::type out_data_t;
bool is_dense() const {
const memory_desc_wrapper &input_d = pd()->src_md();
const memory_desc_wrapper &output_d = pd()->dst_md();
return utils::everyone_is(1,
input_d.blocking_desc().strides[input_d.ndims() - 1],
output_d.blocking_desc().strides[output_d.ndims() - 1]);
}
/* This function assumes that only the innermost dimension (C) is
dense (that is to say, stride is 1). This is enough to have
good performance and allow non trivial strides on other
dimensions (to allow an "optimized" path for views for
example).
*/
status_t execute_dense(out_data_t *output, const in_data_t *input,
const float scale, const float shift) const {
assert(type_i == data_type::f32);
assert(type_o == data_type::u8 || type_o == data_type::s8);
const memory_desc_wrapper &input_d = pd()->src_md();
const memory_desc_wrapper &output_d = pd()->dst_md();
const dim_t outer_dim
= utils::array_product(input_d.dims(), input_d.ndims() - 1);
const dim_t inner_dim = input_d.dims()[input_d.ndims() - 1];
parallel(0, [&](const int ithr, const int nthr) {
dim_t start {0}, end {0};
balance211(outer_dim, nthr, ithr, start, end);
for (int i = start; i < end; ++i) {
const dim_t off_in = input_d.off_l(i * inner_dim);
const dim_t off_out = output_d.off_l(i * inner_dim);
const in_data_t *__restrict i_ = input + off_in;
out_data_t *__restrict o_ = output + off_out;
PRAGMA_OMP_SIMD()
for (int j = 0; j < inner_dim; ++j) {
const float in = (float)i_[j] * scale + shift;
o_[j] = q10n::qz_a1b0<float, out_data_t>()(in);
}
}
});
return status::success;
}
status_t execute_generic(out_data_t *output, const in_data_t *input,
float scale, float shift) const {
assert(type_i == data_type::f32);
assert(type_o == data_type::u8 || type_o == data_type::s8);
const memory_desc_wrapper &input_d = pd()->src_md();
const memory_desc_wrapper &output_d = pd()->dst_md();
const size_t nelems = input_d.nelems();
parallel_nd(nelems, [&](size_t i) {
const float in = (float)input[input_d.off_l(i)] * scale + shift;
output[output_d.off_l(i)] = q10n::qz_a1b0<float, out_data_t>()(in);
});
return status::success;
}
status_t execute(const exec_ctx_t &ctx) const override {
auto input = CTX_IN_MEM(const in_data_t *, DNNL_ARG_FROM);
auto output = CTX_OUT_MEM(out_data_t *, DNNL_ARG_TO);
const float scale = pd()->attr()->rnn_data_qparams_.scale_;
const float shift = pd()->attr()->rnn_data_qparams_.shift_;
if (is_dense())
return execute_dense(output, input, scale, shift);
else
return execute_generic(output, input, scale, shift);
}
const pd_t *pd() const { return (const pd_t *)primitive_t::pd().get(); }
};
template <data_type_t type_i>
struct rnn_weights_reorder_s8_t : public primitive_t {
struct pd_t : public cpu_reorder_pd_t {
using cpu_reorder_pd_t::cpu_reorder_pd_t;
typedef dnnl_status_t (*gemm_pack_f)(const char *identifier,
const char *transa, const char *transb, const dim_t *M,
const dim_t *N, const dim_t *K, const dim_t *lda,
const dim_t *ldb, const void *src, void *dst);
DECLARE_COMMON_PD_T("rnn_weights_reorder_s8", rnn_weights_reorder_s8_t);
status_t init(
engine_t *engine, engine_t *src_engine, engine_t *dst_engine) {
status_t status
= cpu_reorder_pd_t::init(engine, src_engine, dst_engine);
if (status != status::success) return status;
nthr_ = dnnl_get_max_threads();
init_scratchpad();
return status::success;
}
format_tag_t itag_ = format_tag::undef;
format_tag_t otag_ = format_tag::undef;
size_t thr_scratch_comp_sz_ = 0;
int nthr_; // To not exceed the limit in execute used for set up.
gemm_pack_f gemm_pack;
private:
static status_t create(reorder_pd_t **reorder_pd, engine_t *engine,
const primitive_attr_t *attr, engine_t *src_engine,
const memory_desc_t *src_md, engine_t *dst_engine,
const memory_desc_t *dst_md) {
using namespace format_tag;
using namespace rnn_packed_format;
using namespace status;
const memory_desc_wrapper id(src_md), od(dst_md);
bool args_ok = impl::is_dense_format_kind({src_md, dst_md});
#define PD_CHECK_ARG(x) args_ok = args_ok && (x)
// Fast checks
PD_CHECK_ARG(id.data_type() == type_i);
PD_CHECK_ARG(od.data_type() == data_type::s8);
PD_CHECK_ARG(od.format_kind() == format_kind::rnn_packed);
PD_CHECK_ARG(utils::one_of(
od.rnn_packed_desc().format, ldigo_p, ldio_p));
PD_CHECK_ARG(od.ndims() == id.ndims());
// TODO: we have to skip projection qparam even for regular lstm
// as we use the same attr for regular weights and projection
auto skip_mask = primitive_attr_t::skip_mask_t::rnn_data_qparams
| primitive_attr_t::skip_mask_t::rnn_weights_qparams
| primitive_attr_t::skip_mask_t::
rnn_weights_projection_qparams;
PD_CHECK_ARG(attr->has_default_values(skip_mask));
if (!args_ok) return invalid_arguments;
// Slower checks
PD_CHECK_ARG(id.is_dense());
if (!args_ok) return invalid_arguments;
format_tag_t itag = id.matches_one_of_tag(ldigo, ldgoi, ldio, ldoi);
if (itag == format_tag::undef) return invalid_arguments;
// TODO: add support for layer and direction dimensions
// weights_layer and weights_iter
if (id.ndims() == 5
&& !utils::one_of(attr->rnn_weights_qparams_.mask_, 0, 24))
return unimplemented;
// weights_projection
if (id.ndims() == 4
&& !utils::one_of(
attr->rnn_weights_projection_qparams_.mask_, 0, 8))
return unimplemented;
auto _pd = make_unique_pd<pd_t>(attr, src_engine->kind(), src_md,
dst_engine->kind(), dst_md);
if (_pd == nullptr) return out_of_memory;
_pd->itag_ = itag;
CHECK(_pd->init(engine, src_engine, dst_engine));
CHECK(_pd->init_scratchpad_md());
const bool is_s8s8 = dst_md->extra.flags
& memory_extra_flags::rnn_s8s8_compensation;
_pd->gemm_pack = is_s8s8 ? &gemm_s8s8s32_pack : &gemm_s8u8s32_pack;
return safe_ptr_assign(*reorder_pd, _pd.release());
#undef PD_CHECK_ARG
}
void init_scratchpad() {
using namespace format_tag;
const memory_desc_wrapper id(src_md());
const size_t nelems = id.nelems();
const auto &dims = id.dims();
using namespace memory_tracking::names;
auto scratchpad = scratchpad_registry().registrar();
const size_t quantization_size = nelems;
// we do not use GO directly, as this can cause false
// sharing when parallelizing on I (2 threads writing to
// the same cache line)
thr_scratch_comp_sz_ = itag_ == ldigo ? dims[3] * dims[4] : dims[3];
thr_scratch_comp_sz_ = utils::rnd_up(thr_scratch_comp_sz_, 16);
size_t reduction_size = 0;
if (utils::one_of(itag_, ldigo, ldio))
reduction_size = nthr_ * thr_scratch_comp_sz_;
scratchpad.template book<int8_t>(
key_reorder_rnn_weights_quantization, quantization_size);
scratchpad.template book<int32_t>(
key_reorder_rnn_weights_reduction, reduction_size);
}
friend dnnl::impl::impl_list_item_t;
};
rnn_weights_reorder_s8_t(const pd_t *apd) : primitive_t(apd) {}
private:
typedef typename prec_traits<type_i>::type in_data_t;
status_t execute(const exec_ctx_t &ctx) const override {
// TODO: trivial strides assumed here.
// Use proper strides where appropriate
using namespace format_tag;
auto src = CTX_IN_MEM(const in_data_t *, DNNL_ARG_FROM);
auto dst = CTX_OUT_MEM(char *, DNNL_ARG_TO);
const memory_desc_wrapper &src_d = pd()->src_md();
const memory_desc_wrapper &dst_d = pd()->dst_md();
if (src_d.has_zero_dim()) {
assert(dst_d.has_zero_dim());
return status::success;
}
dim_t L, D, I, G, O;
init_dims(L, D, I, G, O, src_d);
/* Quantize src & compute compensation */
auto scratch_quantized
= (int8_t * __restrict) ctx.get_scratchpad_grantor()
.template get<void>(memory_tracking::names::
key_reorder_rnn_weights_quantization);
auto scratch_compensation
= (int32_t * __restrict) ctx.get_scratchpad_grantor()
.template get<void>(memory_tracking::names::
key_reorder_rnn_weights_reduction);
float *comp = reinterpret_cast<float *>(
dst + dst_d.rnn_packed_desc().offset_compensation);
float *scales = nullptr;
int mask = 0;
if (src_d.ndims() == 5) {
scales = pd()->attr()->rnn_weights_qparams_.scales_;
mask = pd()->attr()->rnn_weights_qparams_.mask_;
}
if (src_d.ndims() == 4) {
scales = pd()->attr()->rnn_weights_projection_qparams_.scales_;
mask = pd()->attr()->rnn_weights_projection_qparams_.mask_;
}
/* Step 1: we quantize if we need to */
if (type_i == data_type::f32) {
switch (pd()->itag_) {
case ldigo:
case ldio:
quantize_igo<type_i>(scratch_quantized, src_d, (float *)src,
mask, scales);
break;
case ldgoi:
case ldoi:
quantize_goi<type_i>(scratch_quantized, src_d, (float *)src,
mask, scales);
break;
default: assert(!"Unsupported reorder");
}
} else
scratch_quantized = (int8_t * __restrict) src;
/* Step 2: we pre-compute the compensation */
switch (pd()->itag_) {
case ldigo:
case ldio:
compensate_igo(comp, src_d, scratch_quantized,
scratch_compensation, pd()->thr_scratch_comp_sz_,
pd()->nthr_);
break;
case ldgoi:
case ldoi: compensate_goi(comp, src_d, scratch_quantized); break;
default: assert(!"Unsupported reorder");
}
/* Step 3: we pack the matrix */
const auto off_igo = [&](dim_t l, dim_t d, dim_t i, dim_t g, dim_t o) {
return o + O * (g + G * (i + I * (d + D * l)));
};
const int n_parts = dst_d.rnn_packed_desc().n_parts;
const size_t *size_packed_cell = dst_d.rnn_packed_desc().part_pack_size;
const int *parts = dst_d.rnn_packed_desc().parts;
const dim_t n = dst_d.rnn_packed_desc().n;
const dim_t ldb = dst_d.rnn_packed_desc().ldb;
char *to_pack = dst;
for (dim_t l = 0; l < L; l++) {
for (dim_t d = 0; d < D; d++) {
for (dim_t p = 0; p < n_parts; p++) {
dim_t g = (p > 0) ? parts[p - 1] : 0;
dim_t m_p = parts[p] * O;
dim_t k_p = I;
dim_t lda = (dim_t)G * O;
CHECK(pd()->gemm_pack("A", "N", "N", &m_p, &n, &k_p, &lda,
&ldb, scratch_quantized + off_igo(l, d, 0, g, 0),
to_pack));
to_pack += size_packed_cell[p];
}
}
}
return status::success;
}
const pd_t *pd() const { return (const pd_t *)primitive_t::pd().get(); }
};
template <data_type_t type_i, data_type_t type_o>
struct rnn_weights_reorder_t : public primitive_t {
struct pd_t : public cpu_reorder_pd_t {
using cpu_reorder_pd_t::cpu_reorder_pd_t;
DECLARE_COMMON_PD_T("rnn_weights_reorder", rnn_weights_reorder_t);
format_tag_t itag_;
status_t init(
engine_t *engine, engine_t *src_engine, engine_t *dst_engine) {
status_t status
= cpu_reorder_pd_t::init(engine, src_engine, dst_engine);
if (status != status::success) return status;
init_scratchpad();
return status::success;
}
private:
static status_t create(reorder_pd_t **reorder_pd, engine_t *engine,
const primitive_attr_t *attr, engine_t *src_engine,
const memory_desc_t *src_md, engine_t *dst_engine,
const memory_desc_t *dst_md) {
using namespace format_tag;
using namespace rnn_packed_format;
using namespace status;
const memory_desc_wrapper id(src_md), od(dst_md);
bool args_ok = impl::is_dense_format_kind({src_md, dst_md});
#define PD_CHECK_ARG(x) args_ok = args_ok && (x)
PD_CHECK_ARG(id.data_type() == type_i);
PD_CHECK_ARG(od.data_type() == type_o);
PD_CHECK_ARG(od.format_kind() == format_kind::rnn_packed);
PD_CHECK_ARG(utils::one_of(
od.rnn_packed_desc().format, ldigo_p, ldgoi_p, ldio_p));
PD_CHECK_ARG(attr->has_default_values());
#undef PD_CHECK_ARG
if (!args_ok) return invalid_arguments;
format_tag_t itag = id.matches_one_of_tag(ldigo, ldgoi, ldio, ldoi);
if (itag == format_tag::undef) return invalid_arguments;
auto _pd = make_unique_pd<pd_t>(attr, src_engine->kind(), src_md,
dst_engine->kind(), dst_md);
if (_pd == nullptr) return out_of_memory;
CHECK(_pd->init(engine, src_engine, dst_engine));
_pd->itag_ = itag;
CHECK(_pd->init_scratchpad_md());
return safe_ptr_assign(*reorder_pd, _pd.release());
}
void init_scratchpad() {
using namespace format_tag;
using namespace rnn_packed_format;
const memory_desc_wrapper id(src_md());
const memory_desc_wrapper od(dst_md());
const rnn_packed_desc_t &rnn_pdata = od.rnn_packed_desc();
format_tag_t itag = id.matches_one_of_tag(ldigo, ldgoi, ldio);
const bool layout_cross_case
= (itag == ldigo && rnn_pdata.format == ldgoi_p)
|| (itag == ldgoi && rnn_pdata.format == ldigo_p)
|| (itag == ldio && rnn_pdata.format == ldio_p),
dt_cross_case = type_i == data_type::f32
&& (type_o == data_type::bf16 || type_o == data_type::f16);
const size_t sz = id.nelems();
using namespace memory_tracking::names;
auto scratchpad = scratchpad_registry().registrar();
scratchpad.template book<out_data_t>(
key_reorder_rnn_weights_transposition,
layout_cross_case ? sz : 0);
scratchpad.template book<out_data_t>(
key_reorder_rnn_weights_xf16_cvt, dt_cross_case ? sz : 0);
}
friend dnnl::impl::impl_list_item_t;
};
rnn_weights_reorder_t(const pd_t *apd) : primitive_t(apd) {}
private:
typedef typename prec_traits<type_i>::type in_data_t;
typedef typename prec_traits<type_o>::type out_data_t;
status_t execute(const exec_ctx_t &ctx) const override {
// TODO: trivial strides assumed here.
// Use proper strides where appropriate
using namespace format_tag;
using namespace rnn_packed_format;
auto input = CTX_IN_MEM(const in_data_t *, DNNL_ARG_FROM);
auto output = CTX_OUT_MEM(out_data_t *, DNNL_ARG_TO);
const memory_desc_wrapper &input_d = pd()->src_md();
const memory_desc_wrapper &output_d = pd()->dst_md();
if (input_d.has_zero_dim()) {
assert(output_d.has_zero_dim());
return status::success;
}
const rnn_packed_desc_t &rnn_pdata = output_d.rnn_packed_desc();
dim_t L, D, I, G, O;
init_dims(L, D, I, G, O, input_d);
/* Pack */
const bool from_igo = utils::one_of(pd()->itag_, ldigo, ldio);
const bool to_igo = utils::one_of(rnn_pdata.format, ldigo_p, ldio_p);
const int n_parts = rnn_pdata.n_parts;
const size_t *size_packed_cell = rnn_pdata.part_pack_size;
const int *parts = rnn_pdata.parts;
const dim_t n = rnn_pdata.n;
/* Convert to fp32*/
out_data_t *input_cvt = (out_data_t *)input;
if (type_i == data_type::f32 && type_o == data_type::bf16) {
input_cvt
= (out_data_t *)ctx.get_scratchpad_grantor()
.template get<void>(memory_tracking::names::
key_reorder_rnn_weights_xf16_cvt);
parallel_nd(L * D, [&](dim_t ld) {
types::cvt_from_float((bfloat16_t *)input_cvt + ld * G * O * I,
(float *)input + ld * G * O * I, G * O * I);
});
}
/* Transpose weights prior to packing to ensure that packed GEMM
* algorithm will be dispatched */
out_data_t *input_tr = input_cvt;
if (from_igo != to_igo) {
input_tr
= (out_data_t *)ctx.get_scratchpad_grantor().template get<void>(
memory_tracking::names::
key_reorder_rnn_weights_transposition);
const dim_t M = to_igo ? G * O : I;
const dim_t N = to_igo ? I : G * O;
parallel_nd(L * D, N, [&](dim_t ld, dim_t i) {
for (dim_t j = 0; j < M; j++) {
input_tr[ld * M * N + i * M + j]
= input_cvt[ld * M * N + j * N + i];
}
});
}
const auto off_igo = [&](dim_t l, dim_t d, dim_t i, dim_t g, dim_t o) {
return l * D * I * G * O + d * I * G * O + i * G * O + g * O + o;
};
const auto off_goi = [&](dim_t l, dim_t d, dim_t i, dim_t g, dim_t o) {
return l * D * G * O * I + d * G * O * I + g * O * I + o * I + i;
};
const dim_t lda = to_igo ? G * O : I;
const dim_t ldb = rnn_pdata.ldb;
for (dim_t l = 0; l < L; l++) {
for (dim_t d = 0; d < D; d++) {
for (dim_t p = 0; p < n_parts; p++) {
const dim_t g = (p > 0) ? parts[p - 1] : 0;
const dim_t m_p = to_igo ? parts[p] * O : I;
const dim_t k_p = to_igo ? I : parts[p] * O;
if (type_o == data_type::bf16) {
CHECK(gemm_bf16bf16f32_pack("A", "N", "N", &m_p, &n,
&k_p, &lda, &ldb,
(bfloat16_t *)&input_tr[to_igo
? off_igo(l, d, 0, g, 0)
: off_goi(l, d, 0, g, 0)],
(bfloat16_t *)output));
} else if (type_o == data_type::f16) {
assert(!"Unimplemented");
return status::unimplemented;
} else {
CHECK(sgemm_pack("A", "N", "N", &m_p, &n, &k_p, &lda,
&ldb,
(float *)&input_tr[to_igo
? off_igo(l, d, 0, g, 0)
: off_goi(l, d, 0, g, 0)],
(float *)output));
}
output += size_packed_cell[p] / sizeof(out_data_t);
}
}
}
return status::success;
}
const pd_t *pd() const { return (const pd_t *)primitive_t::pd().get(); }
};
template <data_type_t type_i, data_type_t type_o>
struct rnn_brgemm_weights_reorder_s8_t : public primitive_t {
struct pd_t : public cpu_reorder_pd_t {
using cpu_reorder_pd_t::cpu_reorder_pd_t;
DECLARE_COMMON_PD_T("rnn_brgemm_weights_reorder_s8_t",
rnn_brgemm_weights_reorder_s8_t);
format_tag_t itag_;
format_tag_t otag_;
int nthr_; // To not exceed the limit in execute used for set up.
size_t thr_scratch_comp_sz_ = 0;
status_t init(
engine_t *engine, engine_t *src_engine, engine_t *dst_engine) {
status_t status
= cpu_reorder_pd_t::init(engine, src_engine, dst_engine);
if (status != status::success) return status;
nthr_ = dnnl_get_max_threads();
init_scratchpad();
return status::success;
}
private:
static status_t create(reorder_pd_t **reorder_pd, engine_t *engine,
const primitive_attr_t *attr, engine_t *src_engine,
const memory_desc_t *src_md, engine_t *dst_engine,
const memory_desc_t *dst_md) {
using namespace status;
using namespace format_tag;
using namespace memory_extra_flags;
const memory_desc_wrapper id(src_md), od(dst_md);
const bool args_ok = impl::is_dense_format_kind({src_md, dst_md})
&& id.data_type() == type_i
&& od.data_type() == data_type::s8 && id.is_dense();
if (!args_ok) return invalid_arguments;
const auto skip_mask
= primitive_attr_t::skip_mask_t::rnn_data_qparams
| primitive_attr_t::skip_mask_t::rnn_weights_qparams
| primitive_attr_t::skip_mask_t::
rnn_weights_projection_qparams;
if (!attr->has_default_values(skip_mask)) return invalid_arguments;
// TODO: add support for layer and direction dimensions
// weights_layer and weights_iter
if (id.ndims() == 5
&& !utils::one_of(attr->rnn_weights_qparams_.mask_, 0, 24))
return unimplemented;
// weights_projection
if (id.ndims() == 4
&& !utils::one_of(
attr->rnn_weights_projection_qparams_.mask_, 0, 8))
return unimplemented;
// Check the proper memory desc has been passed to u8s8 and s8s8
// Note: currently rnn_u8s8_compensation and rnn_s8s8_compensation
// have common bit so we have to perform additional checks to
// separate these two cases
const bool check_u8s8 = (od.extra().flags & rnn_u8s8_compensation)
&& !types::extra_flag_rnn_s8s8_compensation_is_set(
od.extra().flags)
&& od.extra().compensation_mask
== ((id.ndims() == 5) ? 27 /* 11011 */
: 13 /* 1101 */);
const bool check_s8s8 = od.extra().flags & rnn_s8s8_compensation
&& od.extra().compensation_mask == 0;
if (!(check_u8s8 || check_s8s8)) return invalid_arguments;
auto _pd = make_unique_pd<pd_t>(attr, src_engine->kind(), src_md,
dst_engine->kind(), dst_md);
if (_pd == nullptr) return out_of_memory;
CHECK(_pd->init(engine, src_engine, dst_engine));
_pd->itag_ = format_tag::undef;
format_tag_t otag, itag;
itag = id.matches_one_of_tag(ldigo, ldio);
otag = od.matches_one_of_tag(
ldgOI64o4i, ldgOI32o4i, ldgOI16o4i, ldOI32o4i, ldOI16o4i);
if (itag != format_tag::undef && otag != format_tag::undef) {
_pd->itag_ = itag;
_pd->otag_ = otag;
} else {
return invalid_arguments;
}
CHECK(_pd->init_scratchpad_md());
return safe_ptr_assign<reorder_pd_t>(*reorder_pd, _pd.release());
}
void init_scratchpad() {
using namespace format_tag;
const memory_desc_wrapper id(src_md());
const size_t nelems = id.nelems();
const auto &dims = id.dims();
const auto ndims = id.ndims();
using namespace memory_tracking::names;
auto scratchpad = scratchpad_registry().registrar();
const size_t quantization_size = nelems;
// we do not use GO directly, as this can cause false
// sharing when parallelizing on I (2 threads writing to
// the same cache line)
thr_scratch_comp_sz_ = (ndims == 5) ? dims[3] * dims[4] : dims[3];
thr_scratch_comp_sz_ = utils::rnd_up(thr_scratch_comp_sz_, 16);
const size_t reduction_size = nthr_ * thr_scratch_comp_sz_;
scratchpad.template book<int8_t>(
key_reorder_rnn_weights_quantization, quantization_size);
scratchpad.template book<int32_t>(
key_reorder_rnn_weights_reduction, reduction_size);
}
friend dnnl::impl::impl_list_item_t;
};
rnn_brgemm_weights_reorder_s8_t(const pd_t *apd) : primitive_t(apd) {}
private:
typedef typename prec_traits<type_i>::type in_data_t;
typedef typename prec_traits<type_o>::type out_data_t;
status_t execute(const exec_ctx_t &ctx) const override {
using namespace format_tag;
using namespace data_type;
using namespace utils;
using namespace memory_extra_flags;
auto src = CTX_IN_MEM(const in_data_t *, DNNL_ARG_FROM);
auto dst = CTX_OUT_MEM(out_data_t *, DNNL_ARG_TO);
const memory_desc_wrapper &src_d = pd()->src_md();
const memory_desc_wrapper &dst_d = pd()->dst_md();
if (src_d.has_zero_dim()) {
assert(dst_d.has_zero_dim());
return status::success;
}
const int o_block = dst_d.blocking_desc().inner_blks[0];
static constexpr int i_block = 4;
dim_t L, D, I, G, O;
init_dims(L, D, I, G, O, src_d);
const auto &pdims = dst_d.padded_dims();
const dim_t pI = pdims[2];
const dim_t pO = (src_d.ndims() == 5) ? pdims[4] : pdims[3];
const dim_t IB = pI / i_block;
const dim_t OB = pO / o_block;
const size_t compensation_offset = (size_t)L * D * G * pI * pO;
/* Quantize src & compute compensation */
auto scratch_quantized
= (int8_t * __restrict) ctx.get_scratchpad_grantor()
.template get<void>(memory_tracking::names::
key_reorder_rnn_weights_quantization);
auto scratch_compensation
= (int32_t * __restrict) ctx.get_scratchpad_grantor()
.template get<void>(memory_tracking::names::
key_reorder_rnn_weights_reduction);
float *comp = reinterpret_cast<float *>(dst + compensation_offset);
const bool req_s8s8_comp = (dst_d.extra().flags & rnn_u8s8_compensation)
&& !types::extra_flag_rnn_s8s8_compensation_is_set(
dst_d.extra().flags);
const auto mask_ok = [&](int mask) {
return mask
== ((src_d.ndims() == 5) ? 27 /* 11011 */
: 13 /* 1101 */);
};
float *scales = nullptr;
int mask = 0;
if (src_d.ndims() == 5) {
scales = pd()->attr()->rnn_weights_qparams_.scales_;
mask = pd()->attr()->rnn_weights_qparams_.mask_;
}
if (src_d.ndims() == 4) {
scales = pd()->attr()->rnn_weights_projection_qparams_.scales_;
mask = pd()->attr()->rnn_weights_projection_qparams_.mask_;
}
if (type_i == data_type::f32) {
quantize_igo<type_i>(
scratch_quantized, src_d, (float *)src, mask, scales);
} else
scratch_quantized = (int8_t * __restrict) src;
if (req_s8s8_comp && mask_ok(dst_d.extra().compensation_mask))
compensate_igo(comp, src_d, scratch_quantized, scratch_compensation,
pd()->thr_scratch_comp_sz_, pd()->nthr_);
const auto off_plain
= [&](dim_t l, dim_t d, dim_t i, dim_t g, dim_t o) {
return ((((dim_t)l * D + d) * I + i) * G + g) * O + o;
};
const auto off_blk = [&](dim_t l, dim_t d, dim_t g, dim_t ob,
dim_t ib) {
return (((((dim_t)l * D + d) * G + g) * OB + ob) * IB + ib)
* i_block * o_block;
};
const auto off_inner_blk = [&](int xdim, int y, int x,
int folding_factor) {
const int row = (xdim) * (y / folding_factor) * folding_factor;
const int col = x * folding_factor + (y % folding_factor);
return row + col;
};
const auto kernel_plain_to_blocked
= [&](const out_data_t *inp, out_data_t *out, int ib, int ob) {
PRAGMA_OMP_SIMD()
for (int i = 0; i < i_block * o_block; i++)
out[i] = 0;
for_(int i = 0; i < i_block; i++)
for (int o = 0; o < o_block; o++) {
if ((i + ib * i_block < I) && (o + ob * o_block < O))
out[off_inner_blk(o_block, i, o, i_block)]
= inp[i * G * O + o];
}
};
parallel_nd(L, D, G, OB, IB,
[&](dim_t l, dim_t d, dim_t g, dim_t ob, dim_t ib) {
auto inp = &scratch_quantized[off_plain(
l, d, ib * i_block, g, ob * o_block)];
auto out = &dst[off_blk(l, d, g, ob, ib)];
kernel_plain_to_blocked(inp, out, ib, ob);
});
return status::success;
}
const pd_t *pd() const { return (const pd_t *)primitive_t::pd().get(); }
};
} // namespace cpu
} // namespace impl
} // namespace dnnl
#endif