forked from uxlfoundation/oneDNN
-
Notifications
You must be signed in to change notification settings - Fork 45
/
Copy pathgemm_convolution.hpp
258 lines (207 loc) · 9.95 KB
/
gemm_convolution.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
/*******************************************************************************
* Copyright 2016-2021 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
#ifndef CPU_GEMM_CONVOLUTION_HPP
#define CPU_GEMM_CONVOLUTION_HPP
#include "common/c_types_map.hpp"
#include "common/memory_tracking.hpp"
#include "common/primitive.hpp"
#include "cpu/cpu_convolution_pd.hpp"
#include "cpu/gemm/gemm.hpp"
#include "cpu/gemm_convolution_utils.hpp"
#include "cpu/primitive_attr_postops.hpp"
#include "ref_depthwise_injector.hpp"
namespace dnnl {
namespace impl {
namespace cpu {
struct gemm_convolution_fwd_t : public primitive_t {
struct pd_t : public cpu_convolution_fwd_pd_t {
pd_t(const convolution_desc_t *adesc, const primitive_attr_t *attr,
const typename pd_t::base_class *hint_fwd_pd)
: cpu_convolution_fwd_pd_t(adesc, attr, hint_fwd_pd), jcp_() {}
DECLARE_COMMON_PD_T(
GEMM_IMPL_STR, gemm_convolution_fwd_t, USE_GLOBAL_SCRATCHPAD);
status_t init(engine_t *engine) {
using namespace data_type;
bool ok = is_fwd()
&& set_default_alg_kind(alg_kind::convolution_direct)
&& expect_data_types(f32, f32, f32, f32, f32)
&& !has_zero_dim_memory()
&& attr()->has_default_values(
primitive_attr_t::skip_mask_t::post_ops, f32)
&& post_ops_ok();
if (!ok) return status::unimplemented;
auto scratchpad = scratchpad_registry().registrar();
return jit_gemm_convolution_utils::init_conf(jcp_, scratchpad,
*desc(), src_md_, weights_md_, dst_md_, bias_md_, attr_,
dnnl_get_max_threads());
}
conv_gemm_conf_t jcp_;
protected:
bool post_ops_ok() const {
using namespace dnnl::impl::primitive_kind;
auto const &po = attr()->post_ops_;
auto all_post_ops_supported = [&]() {
bool ok = true;
for (int i = 0; i < po.len(); i++) {
ok = ok && utils::one_of(po.entry_[i].kind, sum, eltwise, depthwise, quantization);
}
return ok;
};
auto contain = [&](dnnl::impl::primitive_kind_t kind) { return po.find(kind) != -1; };
auto position = [&](dnnl::impl::primitive_kind_t kind) { return po.find(kind); };
auto count = [&](dnnl::impl::primitive_kind_t kind) { return po.count(kind); };
return all_post_ops_supported() &&
count(primitive_kind::sum) <= 1 &&
IMPLICATION(contain(primitive_kind::sum), position(primitive_kind::sum) == 0);
}
};
gemm_convolution_fwd_t(const pd_t *apd)
: primitive_t(apd), post_ops_(nullptr) {}
status_t init(engine_t *engine) override {
const auto &post_ops = pd()->attr()->post_ops_;
const data_t one = 1.0, zero = 0.0;
const auto &jcp = pd()->jcp_;
beta_ = jcp.with_sum ? one : zero;
bool has_bias = pd()->with_bias();
bool has_post_ops = post_ops.len() > 0;
bool has_scale = !pd()->attr()->output_scales_.has_default_values();
postops_in_ip_ = has_bias || has_post_ops || has_scale;
CHECK(safe_ptr_assign(pp_kernel_, pp_kernel_t::create(pd(), pd()->jcp_)));
return (pp_kernel_) ? pp_kernel_->create_kernel() : status::success;
}
typedef typename prec_traits<data_type::f32>::type data_t;
status_t execute(const exec_ctx_t &ctx) const override {
bool is_nspc = pd()->jcp_.is_nspc;
return is_nspc ? execute_forward_nspc(ctx) : execute_forward_ncsp(ctx);
}
private:
status_t execute_forward_ncsp(const exec_ctx_t &ctx) const;
status_t execute_forward_nspc(const exec_ctx_t &ctx) const;
status_t execute_forward_thr_nspc(const exec_ctx_t &ctx, const int ithr,
const int nthr, const data_t *src_base, const data_t *wei_base,
const data_t *bia_base, data_t *dst_base,
const memory_tracking::grantor_t &scratchpad, int MB) const;
const pd_t *pd() const { return (const pd_t *)primitive_t::pd().get(); }
using pp_kernel_t = gemm_convolution_utils::pp_kernel_t;
std::unique_ptr<pp_kernel_t> pp_kernel_;
bool postops_in_ip_;
data_t beta_;
std::unique_ptr<ref_post_ops_t> post_ops_;
};
struct gemm_convolution_bwd_data_t : public primitive_t {
struct pd_t : public cpu_convolution_bwd_data_pd_t {
pd_t(const convolution_desc_t *adesc, const primitive_attr_t *attr,
const convolution_fwd_pd_t *hint_fwd_pd)
: cpu_convolution_bwd_data_pd_t(adesc, attr, hint_fwd_pd), jcp_() {}
DECLARE_COMMON_PD_T(GEMM_IMPL_STR, gemm_convolution_bwd_data_t,
USE_GLOBAL_SCRATCHPAD);
status_t init(engine_t *engine) {
bool ok = true && desc()->prop_kind == prop_kind::backward_data
&& set_default_alg_kind(alg_kind::convolution_direct)
&& expect_data_types(data_type::f32, data_type::f32,
data_type::undef, data_type::f32, data_type::f32)
&& !has_zero_dim_memory()
&& is_supported_post_ops();
if (!ok) return status::unimplemented;
auto scratchpad = scratchpad_registry().registrar();
return jit_gemm_convolution_utils::init_conf(jcp_, scratchpad,
*desc(), diff_src_md_, weights_md_, diff_dst_md_, bias_md_,
attr_, dnnl_get_max_threads());
}
conv_gemm_conf_t jcp_;
protected:
virtual bool is_supported_post_ops() const {
const auto &p = this->attr()->post_ops_;
if (p.len() > 1)
return false;
auto all_post_ops_supported = [&]() {
bool ok = true;
for (int i = 0; i < p.len(); i++) {
ok = ok && utils::one_of(p.entry_[i].kind, primitive_kind::depthwise);
}
return ok;
};
return all_post_ops_supported();
}
};
gemm_convolution_bwd_data_t(const pd_t *apd) : primitive_t(apd) {
const auto &post_ops = pd()->attr()->post_ops_;
for (int i = 0; i < post_ops.len(); i++) {
auto &post_op = post_ops.entry_[i];
if (post_op.is_depthwise()) {
depthwise_injectors.push_back(new ref_depthwise_scalar_fwd_t(post_op.depthwise.alg));
}
}
}
~gemm_convolution_bwd_data_t() {
for (auto inj : depthwise_injectors)
delete inj;
depthwise_injectors.clear();
}
typedef typename prec_traits<data_type::f32>::type data_t;
status_t execute(const exec_ctx_t &ctx) const override {
bool is_nspc = pd()->jcp_.is_nspc;
return is_nspc ? execute_backward_data_nspc(ctx)
: execute_backward_data_ncsp(ctx);
}
private:
status_t execute_backward_data_nspc(const exec_ctx_t &ctx) const;
status_t execute_backward_data_ncsp(const exec_ctx_t &ctx) const;
status_t execute_backward_data_thr_nspc(const int ithr, const int nthr,
const data_t *diff_dst_base, const data_t *wei_base,
const data_t *bia_base, data_t *diff_src_base,
const memory_tracking::grantor_t &scratchpad, int MB) const;
const pd_t *pd() const { return (const pd_t *)primitive_t::pd().get(); }
nstl::vector<ref_depthwise_scalar_fwd_t*> depthwise_injectors;
};
struct gemm_convolution_bwd_weights_t : public primitive_t {
struct pd_t : public cpu_convolution_bwd_weights_pd_t {
pd_t(const convolution_desc_t *adesc, const primitive_attr_t *attr,
const convolution_fwd_pd_t *hint_fwd_pd)
: cpu_convolution_bwd_weights_pd_t(adesc, attr, hint_fwd_pd)
, jcp_() {}
DECLARE_COMMON_PD_T(GEMM_IMPL_STR, gemm_convolution_bwd_weights_t,
USE_GLOBAL_SCRATCHPAD);
status_t init(engine_t *engine) {
bool ok = true && desc()->prop_kind == prop_kind::backward_weights
&& set_default_alg_kind(alg_kind::convolution_direct)
&& expect_data_types(data_type::f32, data_type::f32,
data_type::f32, data_type::f32, data_type::f32)
&& !has_zero_dim_memory() && attr()->has_default_values();
if (!ok) return status::unimplemented;
auto scratchpad = scratchpad_registry().registrar();
return jit_gemm_convolution_utils::init_conf(jcp_, scratchpad,
*desc(), src_md_, diff_weights_md_, diff_dst_md_,
diff_bias_md_, attr_, dnnl_get_max_threads());
}
conv_gemm_conf_t jcp_;
};
gemm_convolution_bwd_weights_t(const pd_t *apd) : primitive_t(apd) {}
typedef typename prec_traits<data_type::f32>::type data_t;
status_t execute(const exec_ctx_t &ctx) const override {
const bool is_nspc = pd()->jcp_.is_nspc;
return is_nspc ? execute_backward_weights_nspc(ctx)
: execute_backward_weights_ncsp(ctx);
}
private:
status_t execute_backward_weights_ncsp(const exec_ctx_t &ctx) const;
status_t execute_backward_weights_nspc(const exec_ctx_t &ctx) const;
const pd_t *pd() const { return (const pd_t *)primitive_t::pd().get(); }
};
} // namespace cpu
} // namespace impl
} // namespace dnnl
#endif