-
Notifications
You must be signed in to change notification settings - Fork 2.5k
/
Copy pathtest_addcmul.py
53 lines (43 loc) · 1.64 KB
/
test_addcmul.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
# Copyright (C) 2018-2025 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
import numpy as np
import pytest
from pytorch_layer_test_class import PytorchLayerTest
class TestAddCMul(PytorchLayerTest):
def _prepare_input(self):
return (np.random.uniform(0, 50, 3).astype(self.input_type),
np.random.uniform(0, 50, 3).astype(self.input_type),
np.random.uniform(0, 50, 3).astype(self.input_type))
def create_model(self, value=None):
import torch
class aten_addcmul(torch.nn.Module):
def __init__(self, value=None):
super(aten_addcmul, self).__init__()
self.value = value
def forward(self, x, y, z):
if self.value is not None:
return torch.addcmul(x, y, z, value=self.value)
return torch.addcmul(x, y, z)
ref_net = None
return aten_addcmul(value), ref_net, "aten::addcmul"
@pytest.mark.parametrize(("input_type", "value"), [
[np.int32, None],
[np.float32, None],
[np.float64, None],
[np.int32, 1],
[np.int32, 2],
[np.int32, 10],
[np.int32, 110],
[np.float32, 2.0],
[np.float32, 3.123],
[np.float32, 4.5],
[np.float64, 41.5],
[np.float64, 24.5],
])
@pytest.mark.nightly
@pytest.mark.precommit
@pytest.mark.precommit_torch_export
@pytest.mark.precommit_fx_backend
def test_addcmul(self, input_type, value, ie_device, precision, ir_version):
self.input_type = input_type
self._test(*self.create_model(value), ie_device, precision, ir_version)