-
Notifications
You must be signed in to change notification settings - Fork 2.5k
/
Copy pathtest_aminmax.py
60 lines (49 loc) · 2.2 KB
/
test_aminmax.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
# Copyright (C) 2018-2025 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
import pytest
import torch
from pytorch_layer_test_class import PytorchLayerTest
class TestAminMax(PytorchLayerTest):
def _prepare_input(self, inputs, dtype=None):
import numpy as np
return [np.array(inputs).astype(dtype)]
def create_model(self, dtype=None, dim=None, keepdim=False):
dtype_map = {
"float32": torch.float32,
"float64": torch.float64,
"int32": torch.int32,
"int64": torch.int64,
}
dtype = dtype_map.get(dtype)
class aten_aminmax(torch.nn.Module):
def __init__(self, dtype, dim, keepdim):
super().__init__()
self.dtype = dtype
self.dim = dim
self.keepdim = keepdim
def forward(self, x):
return torch.aminmax(x.to(self.dtype), dim=self.dim, keepdim=self.keepdim, out=None)
model_class = aten_aminmax(dtype, dim, keepdim)
ref_net = None
return model_class, ref_net, "aten::aminmax"
@pytest.mark.nightly
@pytest.mark.precommit
@pytest.mark.parametrize("dtype", ["float32", "float64", "int32", "int64"])
@pytest.mark.parametrize("inputs", [[0, 1, 2, 3, 4, -1],
[-2, -1, 0, 1, 2, 3],
[1, 2, 3, 4, 5, 6]])
@pytest.mark.parametrize("dim,keepdim", [(None, False), # Test with default arguments
(0, False), # Test with dim provided and keepdim=False
(0, True), # Test with dim provided and keepdim=True
(None, True)]) # Test with keepdim=True and dim not provided
def test_aminmax(self, dtype, inputs, ie_device,
precision, ir_version, dim, keepdim):
self._test(
*self.create_model(dtype=dtype, dim=dim, keepdim=keepdim),
ie_device,
precision,
ir_version,
trace_model=True,
freeze_model=False,
kwargs_to_prepare_input={"inputs": inputs, "dtype": dtype}
)