-
Notifications
You must be signed in to change notification settings - Fork 2.5k
/
Copy pathtest_batch_norm.py
66 lines (54 loc) · 2.96 KB
/
test_batch_norm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
# Copyright (C) 2018-2025 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
import pytest
from pytorch_layer_test_class import PytorchLayerTest
class TestBatchNorm(PytorchLayerTest):
def _prepare_input(self, ndim=4):
import numpy as np
shape5d = [20, 6, 10, 10, 10]
shape = shape5d[:ndim]
return (np.random.randn(*shape).astype(np.float32),)
def create_model(self, weights, bias, eps, train, running_stats):
import torch
import torch.nn.functional as F
class aten_batch_norm_inference(torch.nn.Module):
def __init__(self, weights=True, bias=True, eps=1e-05):
super(aten_batch_norm_inference, self).__init__()
self.weight = torch.randn(6) if weights else None
self.bias = torch.randn(6) if bias else None
self.running_mean = torch.randn(6)
self.running_var = torch.randn(6)
self.eps = eps
def forward(self, x):
return F.batch_norm(x, self.running_mean, self.running_var, self.weight, self.bias, eps=self.eps, training=False)
class aten_batch_norm_train(torch.nn.Module):
def __init__(self, weights=True, bias=True, eps=1e-05, running_stats=False):
super(aten_batch_norm_train, self).__init__()
self.weight = torch.randn(6) if weights else None
self.bias = torch.randn(6) if bias else None
self.running_mean = torch.randn(6) if running_stats else None
self.running_var = torch.randn(6) if running_stats else None
self.eps = eps
def forward(self, x):
return F.batch_norm(x, self.running_mean, self.running_var, self.weight, self.bias, eps=self.eps, training=True)
ref_net = None
return aten_batch_norm_inference(weights, bias, eps) if not train else aten_batch_norm_train(weights, bias, eps, running_stats), ref_net, "aten::batch_norm"
@pytest.mark.parametrize("weights", [True, False])
@pytest.mark.parametrize("bias", [True, False])
@pytest.mark.parametrize("eps", [1.0, 0.00005, 0.5, 0.042])
@pytest.mark.parametrize(("train", "running_stats"), [(True, False), (True, True), (False, False)])
@pytest.mark.parametrize("kwargs_to_prepare_input",
[
{"ndim": 3},
{'ndim': 4},
{"ndim": 5}
])
@pytest.mark.nightly
@pytest.mark.precommit
@pytest.mark.precommit_fx_backend
@pytest.mark.precommit_torch_export
def test_batch_norm(self, weights, bias, eps, train, running_stats, ie_device, precision, ir_version, kwargs_to_prepare_input):
if running_stats and self.use_torch_export():
pytest.skip("running_mean not supported by torch.export")
self._test(*self.create_model(weights, bias, eps, train, running_stats),
ie_device, precision, ir_version, kwargs_to_prepare_input=kwargs_to_prepare_input, dynamic_shapes=False, use_mo_convert=False)