-
Notifications
You must be signed in to change notification settings - Fork 2.5k
/
Copy pathtest_bitwise_ops.py
202 lines (175 loc) · 7.12 KB
/
test_bitwise_ops.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
# Copyright (C) 2018-2025 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
import numpy as np
import pytest
import torch
from packaging.version import parse as parse_version
from pytorch_layer_test_class import PytorchLayerTest, skip_if_export
class TestBitwiseOp(PytorchLayerTest):
def _prepare_input(self, out, unary, lhs_dtype, rhs_dtype, lhs_shape, rhs_shape):
choices = np.array([0, 1, 255, 7])
x = np.random.choice(choices, lhs_shape).astype(lhs_dtype)
if unary:
return (x,) if not out else (x, np.zeros_like(x).astype(lhs_dtype))
y = np.random.choice(choices, rhs_shape).astype(rhs_dtype)
if not out:
return x, y
return x, y, np.zeros_like(x).astype(lhs_dtype) + np.zeros_like(y).astype(rhs_dtype)
def create_model(self, op_name, out):
ops = {
"and": torch.bitwise_and,
"or": torch.bitwise_or,
"xor": torch.bitwise_xor,
"not": torch.bitwise_not,
}
op = ops[op_name]
class aten_bitwise(torch.nn.Module):
def __init__(self, op, out) -> None:
super().__init__()
self.op = op
if op == torch.bitwise_not:
self.forward = self.forward_not
if out:
self.forward = self.forward_out if not op == torch.bitwise_not else self.forward_not_out
def forward(self, tensor_a, tensor_b):
return self.op(tensor_a, tensor_b)
def forward_out(self, tensor_a, tensor_b, out):
return self.op(tensor_a, tensor_b, out=out), out
def forward_not(self, tensor_a):
return self.op(tensor_a)
def forward_not_out(self, tensor_a, out):
return self.op(tensor_a, out=out), out
ref_net = None
return aten_bitwise(op, out), ref_net, f"aten::bitwise_{op_name}"
@pytest.mark.nightly
@pytest.mark.precommit
@pytest.mark.precommit_torch_export
@pytest.mark.precommit_fx_backend
@pytest.mark.parametrize("op_type", ["and", "or", "not", "xor"])
@pytest.mark.parametrize("lhs_dtype", ["bool", "int32", "uint8", "int64"])
@pytest.mark.parametrize("rhs_dtype", ["bool", "int32", "uint8", "int64"])
@pytest.mark.parametrize(
("lhs_shape", "rhs_shape"),
[
([2, 3], [2, 3]),
([2, 3], []),
([], [2, 3]),
],
)
@pytest.mark.parametrize("out", [False, skip_if_export(True)])
def test_bitwise_mixed_dtypes(
self, op_type, out, lhs_dtype, rhs_dtype, lhs_shape, rhs_shape, ie_device, precision, ir_version
):
if ie_device == "GPU" and (lhs_dtype != "bool" or rhs_dtype != "bool"):
pytest.xfail(reason="bitwise ops are not supported on GPU")
self._test(
*self.create_model(op_type, out),
ie_device,
precision,
ir_version,
kwargs_to_prepare_input={
"out": out,
"unary": op_type == "not",
"lhs_dtype": lhs_dtype,
"rhs_dtype": rhs_dtype,
"lhs_shape": lhs_shape,
"rhs_shape": rhs_shape,
},
freeze_model=False,
trace_model=True,
)
class TestBitwiseOperators(PytorchLayerTest):
def _prepare_input(self, lhs_dtype, rhs_dtype, lhs_shape, rhs_shape):
choices = np.array([0, 1, 255, 7])
x = np.random.choice(choices, lhs_shape).astype(lhs_dtype)
y = np.random.choice(choices, rhs_shape).astype(rhs_dtype)
return x, y
def create_model(self):
class aten_bitwise(torch.nn.Module):
def forward(self, lhs, rhs):
return lhs & rhs, ~lhs, lhs | rhs, lhs ^ rhs
ref_net = None
return aten_bitwise(), ref_net, ("aten::__and__", "aten::bitwise_not", "aten::__or__", "aten::__xor__")
@pytest.mark.nightly
@pytest.mark.precommit
@pytest.mark.precommit_torch_export
@pytest.mark.precommit_fx_backend
@pytest.mark.parametrize("lhs_dtype", ["bool", "int32"])
@pytest.mark.parametrize("rhs_dtype", ["bool", "int32"])
@pytest.mark.parametrize(
("lhs_shape", "rhs_shape"),
[
([2, 3], [2, 3]),
([2, 3], []),
([], [2, 3]),
],
)
def test_bitwise_operators(self, lhs_dtype, rhs_dtype, lhs_shape, rhs_shape, ie_device, precision, ir_version):
if ie_device == "GPU" and (lhs_dtype != "bool" or rhs_dtype != "bool"):
pytest.xfail(reason="bitwise ops are not supported on GPU")
self._test(
*self.create_model(),
ie_device,
precision,
ir_version,
kwargs_to_prepare_input={
"lhs_dtype": lhs_dtype,
"rhs_dtype": rhs_dtype,
"lhs_shape": lhs_shape,
"rhs_shape": rhs_shape,
},
trace_model=True,
freeze_model=False,
)
class TestBitwiseInplaceOp(PytorchLayerTest):
def _prepare_input(self, lhs_shape, rhs_shape, dtype):
choices = np.array([0, 1, 255, 7])
x = np.random.choice(choices, lhs_shape).astype(dtype)
y = np.random.choice(choices, rhs_shape).astype(dtype)
return x, y
def create_model(self, op):
class aten_bitwise(torch.nn.Module):
def __init__(self, op) -> None:
super().__init__()
if op == "aten::__ior__":
self.forward = self.forward_or
if op == "aten::__iand__":
self.forward = self.forward_and
if op == "aten::__ixor__":
self.forward = self.forward_xor
def forward_or(self, lhs, rhs):
return lhs.__ior__(rhs)
def forward_and(self, lhs, rhs):
return lhs.__iand__(rhs)
def forward_xor(self, lhs, rhs):
return lhs.__ixor__(rhs)
return aten_bitwise(op), None, op
@pytest.mark.skipif(PytorchLayerTest.use_torch_export() and parse_version(torch.__version__) < parse_version("2.6.0"), reason="unsupported on pytorch before 2.6 with torch.export")
@pytest.mark.nightly
@pytest.mark.precommit
@pytest.mark.precommit_torch_export
@pytest.mark.parametrize("dtype", ["bool", "int32"])
@pytest.mark.parametrize(
("lhs_shape", "rhs_shape"),
[
([2, 3], [2, 3]),
([2, 3], []),
],
)
@pytest.mark.parametrize("op", ["aten::__ior__", "aten::__iand__", "aten::__ixor__"])
def test_bitwise_operators(self, op, dtype, lhs_shape, rhs_shape, ie_device, precision, ir_version):
if ie_device == "GPU" and dtype != "bool":
pytest.xfail(reason="bitwise ops are not supported on GPU")
self._test(
*self.create_model(op),
ie_device,
precision,
ir_version,
kwargs_to_prepare_input={
"dtype": dtype,
"lhs_shape": lhs_shape,
"rhs_shape": rhs_shape,
},
trace_model=True,
freeze_model=False,
)