-
Notifications
You must be signed in to change notification settings - Fork 2.5k
/
Copy pathtest_copy.py
67 lines (48 loc) · 2.07 KB
/
test_copy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
# Copyright (C) 2018-2025 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
import pytest
from pytorch_layer_test_class import PytorchLayerTest
class TestCopy(PytorchLayerTest):
def _prepare_input(self):
import numpy as np
return (np.random.randn(1, 3, 224, 224).astype(np.float32),)
def create_model(self, value):
import torch
class aten_copy(torch.nn.Module):
def __init__(self, value):
super(aten_copy, self).__init__()
self.value = torch.tensor(value)
def forward(self, x):
return x.copy_(self.value)
ref_net = None
return aten_copy(value), ref_net, "aten::copy_"
@pytest.mark.nightly
@pytest.mark.precommit
@pytest.mark.precommit_fx_backend
@pytest.mark.parametrize("value", [1, [2.5], range(224)])
def test_copy_(self, value, ie_device, precision, ir_version):
self._test(*self.create_model(value), ie_device, precision, ir_version)
class TestAliasCopy(PytorchLayerTest):
def _prepare_input(self, out):
import numpy as np
if not out:
return (np.random.randn(1, 3, 224, 224).astype(np.float32),)
return (np.random.randn(1, 3, 224, 224).astype(np.float32), np.zeros((1, 3, 224, 224), dtype=np.float32))
def create_model(self, out):
import torch
class aten_copy(torch.nn.Module):
def __init__(self, out):
super(aten_copy, self).__init__()
if out:
self.forward = self.forward_out
def forward(self, x):
return torch.alias_copy(x)
def forward_out(self, x, y):
return torch.alias_copy(x, out=y), y
ref_net = None
return aten_copy(out), ref_net, "aten::alias_copy"
@pytest.mark.nightly
@pytest.mark.precommit
@pytest.mark.parametrize("out", [True, False])
def test_copy_(self, out, ie_device, precision, ir_version):
self._test(*self.create_model(out), ie_device, precision, ir_version, kwargs_to_prepare_input={"out": out})