-
Notifications
You must be signed in to change notification settings - Fork 2.5k
/
Copy pathtest_getitem.py
105 lines (88 loc) · 3.26 KB
/
test_getitem.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
# Copyright (C) 2018-2025 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
import pytest
import torch
from pytorch_layer_test_class import PytorchLayerTest
class TestGetItem(PytorchLayerTest):
def _prepare_input(self, input_shape):
import numpy as np
return (np.random.randn(*input_shape).astype(np.float32),)
def create_model(self, idx, case="size_with_getitem"):
class aten_size_get_item(torch.nn.Module):
def __init__(self, idx):
super().__init__()
self.idx = idx
def forward(self, x):
return x.shape[self.idx]
class aten_size_get_item_with_if(torch.nn.Module):
def __init__(self, idx):
super().__init__()
self.idx: int = idx
def forward(self, x):
if x.shape[self.idx] > self.idx:
res = x.shape[self.idx]
else:
res = x.shape[-self.idx]
return res
ref_net = None
op_cls = {
"getitem": (aten_size_get_item, ["aten::size", "aten::__getitem__"]),
"getitem_with_if": (aten_size_get_item_with_if, ["aten::size", "aten::__getitem__", "prim::If"])
}
op, op_in_graph = op_cls[case]
return op(idx), ref_net, op_in_graph
@pytest.mark.nightly
@pytest.mark.precommit
@pytest.mark.parametrize(("input_shape", "idx"), [
([1,], 0),
([1,], -1),
([1, 2], 0),
([1, 2], 1),
([1, 2], -1),
([1, 2], -2),
([1, 2, 3], 0),
([1, 2, 3], 1),
([1, 2, 3], 2),
([1, 2, 3], -1),
([1, 2, 3], -2),
([1, 2, 3], -3),
([1, 2, 3, 4], 0),
([1, 2, 3, 4], 1),
([1, 2, 3, 4], 2),
([1, 2, 3, 4], 3),
([1, 2, 3, 4], -1),
([1, 2, 3, 4], -2),
([1, 2, 3, 4], -3),
([1, 2, 3, 4], -4),
([1, 2, 3, 4, 5], 0),
([1, 2, 3, 4, 5], 1),
([1, 2, 3, 4, 5], 2),
([1, 2, 3, 4, 5], 3),
([1, 2, 3, 4, 5], 4),
([1, 2, 3, 4, 5], -1),
([1, 2, 3, 4, 5], -2),
([1, 2, 3, 4, 5], -3),
([1, 2, 3, 4, 5], -4),
([1, 2, 3, 4, 5], -5)])
@pytest.mark.parametrize("case", ["getitem", "getitem_with_if"])
def test_getitem(self, input_shape, idx, case, ie_device, precision, ir_version):
self._test(*self.create_model(idx, case), ie_device, precision,
ir_version, kwargs_to_prepare_input={"input_shape": input_shape})
class aten_add_getitem(torch.nn.Module):
def __init__(self, idx):
super().__init__()
self.idx = idx
def forward(self, x):
list = [x, 2*x]
list2 = list + [3*x, 4*x]
return list2[self.idx]
class TestAddGetItem(PytorchLayerTest):
def _prepare_input(self):
import numpy as np
return (np.random.randn(2, 1, 3),)
@pytest.mark.nightly
@pytest.mark.precommit
@pytest.mark.parametrize("idx", [-4, -3, -2, -1, 0, 1, 2, 3])
def test_add_cat(self, ie_device, precision, ir_version, idx):
self._test(aten_add_getitem(idx), None, ["aten::__getitem__", "aten::add", "prim::ListConstruct"],
ie_device, precision, ir_version, freeze_model=False, use_convert_model=True)