-
Notifications
You must be signed in to change notification settings - Fork 2.5k
/
Copy pathtest_hadsigmoid.py
37 lines (27 loc) · 1.37 KB
/
test_hadsigmoid.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
# Copyright (C) 2018-2025 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
import pytest
from pytorch_layer_test_class import PytorchLayerTest, skip_if_export
class TestHardSigmoid(PytorchLayerTest):
def _prepare_input(self, shape, dtype):
import numpy as np
return (np.random.randn(*shape).astype(dtype),)
def create_model(self, inplace):
import torch
import torch.nn.functional as F
class aten_hardsigmoid(torch.nn.Module):
def __init__(self, inplace):
super(aten_hardsigmoid, self).__init__()
self.inplace = inplace
def forward(self, x):
return F.hardsigmoid(x, self.inplace), x
ref_net = None
return aten_hardsigmoid(inplace), ref_net, "aten::hardsigmoid" if not inplace else "aten::hardsigmoid_"
@pytest.mark.nightly
@pytest.mark.precommit
@pytest.mark.precommit_torch_export
@pytest.mark.parametrize("shape", [[1, 10], [1, 2, 3], [1, 2, 3, 4], [1, 2, 3, 4, 5]])
@pytest.mark.parametrize("dtype", ["float32", "float64"])
@pytest.mark.parametrize("inplace", [skip_if_export(True), False])
def test_hardsigmoid(self, shape, dtype, inplace, ie_device, precision, ir_version):
self._test(*self.create_model(inplace), ie_device, precision, ir_version, kwargs_to_prepare_input={"shape": shape, "dtype": dtype})