-
Notifications
You must be signed in to change notification settings - Fork 2.5k
/
Copy pathtest_im2col.py
46 lines (36 loc) · 1.68 KB
/
test_im2col.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
# Copyright (C) 2018-2025 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
import pytest
from pytorch_layer_test_class import PytorchLayerTest
class TestIm2Col(PytorchLayerTest):
def _prepare_input(self):
import numpy as np
return (np.random.randn(10, 3, 24, 24).astype(np.float32),)
def create_model(self, kernel_size, dilation, padding, stride):
import torch
class aten_im2col(torch.nn.Module):
def __init__(self, kernel_size, dilation, padding, stride):
super(aten_im2col, self).__init__()
self.kernel_size = kernel_size
self.dilation = dilation
self.padding = padding
self.stride = stride
def forward(self, x):
return torch.nn.functional.unfold(
x,
kernel_size=self.kernel_size,
dilation=self.dilation,
padding=self.padding,
stride=self.stride
)
ref_net = None
return aten_im2col(kernel_size, dilation, padding, stride), ref_net, "aten::im2col"
@pytest.mark.nightly
@pytest.mark.precommit
@pytest.mark.precommit_torch_export
@pytest.mark.parametrize("kernel_size", [[2, 3], [3, 2], [3, 3], [2, 2], [1, 1]])
@pytest.mark.parametrize("dilation", [1, 2, 3, (1, 2)])
@pytest.mark.parametrize("padding", [0, 5, 1, [2, 3]])
@pytest.mark.parametrize("stride", [3, 1, [2, 1]])
def test_im2col(self, kernel_size, dilation, padding, stride, ie_device, precision, ir_version):
self._test(*self.create_model(kernel_size, dilation, padding, stride), ie_device, precision, ir_version)