-
Notifications
You must be signed in to change notification settings - Fork 2.5k
/
Copy pathtest_index_copy_.py
85 lines (75 loc) · 2.74 KB
/
test_index_copy_.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
# Copyright (C) 2018-2025 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
import numpy as np
import pytest
import torch
from pytorch_layer_test_class import PytorchLayerTest
class TestIndexCopy(PytorchLayerTest):
def _prepare_input(self):
return (self.input_tensor, self.values)
def create_model(self, dim, index):
class aten_index_copy_(torch.nn.Module):
def __init__(self, dim, index):
super().__init__()
self.dim = dim
self.index = index
def forward(self, input_tensor, values):
input_tensor.index_copy_(self.dim, self.index, values)
return input_tensor
ref_net = None
return aten_index_copy_(dim, index), ref_net, "aten::index_copy_"
@pytest.mark.parametrize(
"input_data",
(
{
"input_shape": [1],
"dim": 0,
"values_shape": [1],
"index": torch.tensor([0], dtype=torch.long)
},
{
"input_shape": [10],
"dim": 0,
"values_shape": [5],
"index": torch.tensor([2, 3, 6, 7, 1], dtype=torch.long)
},
{
"input_shape": [3, 3],
"dim": 0,
"values_shape": [2, 3],
"index": torch.tensor([2, 0], dtype=torch.long)
},
{
"input_shape": [4, 3, 5],
"dim": 1,
"values_shape": [4, 2, 5],
"index": torch.tensor([1, 0], dtype=torch.long)
},
{
"input_shape": [5, 6, 7, 8],
"dim": -2,
"values_shape": [5, 6, 4, 8],
"index": torch.tensor([5, 0, 6, 3], dtype=torch.long)
},
{
"input_shape": [5, 6, 7, 8],
"dim": -3,
"values_shape": [5, 3, 7, 8],
"index": torch.tensor([2, 0, 1], dtype=torch.long)
},
{
"input_shape": [5, 6, 7, 8],
"dim": 3,
"values_shape": [5, 6, 7, 5],
"index": torch.tensor([2, 6, 0, 4, 1], dtype=torch.long)
},
),
)
@pytest.mark.nightly
@pytest.mark.precommit
def test_index_copy_single_index(self, ie_device, precision, ir_version, input_data):
self.input_tensor = np.random.randn(*input_data["input_shape"]).astype(np.float32)
self.values = np.random.randn(*input_data["values_shape"]).astype(np.float32)
index = input_data["index"]
dim = input_data["dim"]
self._test(*self.create_model(dim, index), ie_device, precision, ir_version)