-
Notifications
You must be signed in to change notification settings - Fork 2.5k
/
Copy pathtest_index_put_.py
239 lines (202 loc) · 8.87 KB
/
test_index_put_.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
# Copyright (C) 2018-2025 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
import numpy as np
import pytest
import torch
from pytorch_layer_test_class import PytorchLayerTest
class TestIndexPut_SingleIndices(PytorchLayerTest):
def _prepare_input(self):
return (self.input_tensor, self.values)
def create_model(self, indices, accumulate):
class aten_index_put_(torch.nn.Module):
def __init__(self, indices, accumulate):
super().__init__()
self.indices = indices
self.accumulate = accumulate
def forward(self, input_tensor, values):
input_tensor.index_put_((self.indices,), values, self.accumulate)
return input_tensor
ref_net = None
return aten_index_put_(indices, accumulate), ref_net, "aten::index_put_"
@pytest.mark.parametrize(
"input_data",
(
{
"input_shape": [5],
"values": np.array(11).astype(np.float32)},
{
"input_shape": [3, 3],
"values": np.array([10, 11, 12]).astype(np.float32),
},
),
)
@pytest.mark.parametrize(
"indices",
(
torch.tensor([0], dtype=torch.long),
torch.tensor([-1, -2], dtype=torch.long),
torch.tensor([0, -1, -2], dtype=torch.long),
torch.tensor([1, 2], dtype=torch.long),
torch.tensor([0, 1, 2], dtype=torch.long),
),
)
@pytest.mark.parametrize("accumulate", (True, False))
@pytest.mark.nightly
@pytest.mark.precommit
def test_index_put_single_indices(self, ie_device, precision, ir_version, input_data, indices, accumulate):
self.input_tensor = np.random.randn(*input_data["input_shape"]).astype(np.float32)
self.values = input_data["values"]
self._test(*self.create_model(indices, accumulate), ie_device, precision, ir_version)
class TestIndexPut_ManyIndices(PytorchLayerTest):
def _prepare_input(self):
return (self.input_tensor, self.values)
def create_model(self, indices, accumulate):
class aten_index_put_(torch.nn.Module):
def __init__(self, indices, accumulate):
super().__init__()
self.indices_first = indices[0]
self.indices_second = indices[1]
self.accumulate = accumulate
def forward(self, input_tensor, values):
input_tensor.index_put_((self.indices_first, self.indices_second), values, self.accumulate)
return input_tensor
ref_net = None
return aten_index_put_(indices, accumulate), ref_net, "aten::index_put_"
@pytest.mark.parametrize(
"input_data",
(
{
"input_shape": [3, 3],
"values": np.array(12).astype(np.float32)
},
{
"input_shape": [3, 3, 3],
"values": np.array([10, 11, 12]).astype(np.float32),
},
),
)
@pytest.mark.parametrize(
"indices",
(
(torch.tensor([0], dtype=torch.long), torch.tensor([2], dtype=torch.long)),
(torch.tensor([1, 2], dtype=torch.long), torch.tensor([0, 1], dtype=torch.long)),
(torch.tensor([0, 1], dtype=torch.long), torch.tensor([0, 1], dtype=torch.long)),
(torch.tensor([0], dtype=torch.long), torch.tensor([-2], dtype=torch.long)),
(torch.tensor([-1, -2], dtype=torch.long), torch.tensor([0, 1], dtype=torch.long)),
(torch.tensor([0, -1], dtype=torch.long), torch.tensor([0, -1], dtype=torch.long)),
),
)
@pytest.mark.parametrize("accumulate", (True, False))
@pytest.mark.nightly
@pytest.mark.precommit
def test_index_put_many_indices(self, ie_device, precision, ir_version, input_data, indices, accumulate):
self.input_tensor = np.random.randn(*input_data["input_shape"]).astype(np.float32)
self.values = input_data["values"]
self._test(*self.create_model(indices, accumulate), ie_device, precision, ir_version)
class TestNonZero_IndexPut(PytorchLayerTest):
def _prepare_input(self):
return (self.input_tensor, self.values, self.indices_0, self.indices_1)
def create_model(self, accumulate):
class aten_index_put_(torch.nn.Module):
def __init__(self, accumulate):
super().__init__()
self.accumulate = accumulate
def forward(self, input_tensor, values, indices_0, indices_1):
nonzero = (indices_0 == indices_1).nonzero(as_tuple=True)[0]
input_tensor.index_put_((nonzero,), values, self.accumulate)
return input_tensor
ref_net = None
return aten_index_put_(accumulate), ref_net, "aten::index_put_"
@pytest.mark.parametrize(
"input_data",
(
{
"input_shape": [3],
"values": np.array(11).astype(np.float32),
},
{
"input_shape": [3, 3],
"values": np.array([10, 11, 12]).astype(np.float32),
},
{
"input_shape": [3, 3, 3],
"values": np.array([[10, 11, 12]]).astype(np.float32),
},
{
"input_shape": [3, 3, 3],
"values": np.array(10).astype(np.float32),
},
{
"input_shape": [3, 3, 3],
"values": np.zeros((1, 1, 3)).astype(np.float32),
},
),
)
@pytest.mark.parametrize(
"indices",
(
[[1, ], [1, ]],
[[2, ], [2, ]],
[np.array([0, 1, 0]), np.array([1, 1, 0])],
[np.ones(shape=(3,)), np.ones(shape=(3,))],
[np.ones(shape=(3,)), np.zeros(shape=(3,))],
),
)
@pytest.mark.parametrize("accumulate", (False, True))
@pytest.mark.nightly
@pytest.mark.precommit
def test_nonzero_index_put_(self, ie_device, precision, ir_version, input_data, indices, accumulate):
self.input_tensor = np.random.randn(*input_data["input_shape"]).astype(np.float32)
self.values = input_data["values"]
for i in range(len(indices)):
if type(indices[i]) is list:
indices[i] = np.random.randint(0, 2, indices[i])
self.indices_0 = indices[0]
self.indices_1 = indices[1]
self._test(*self.create_model(accumulate), ie_device, precision, ir_version, trace_model=True, use_convert_model=True)
@pytest.mark.nightly
@pytest.mark.precommit
def test_nonzero_index_put_different_ranks(self, ie_device, precision, ir_version):
self.input_tensor = np.random.randn(1, 10, 2).astype(np.float32)
self.values = np.zeros((10, 2), dtype=np.float32)
self.indices_0 = np.array([[0, 0, 1, 1, 1, 1, 1, 1, 0, 0]]).astype(np.float32)
self.indices_1 = np.zeros((1, 10), dtype=np.float32)
self._test(*self.create_model(False), ie_device, precision, ir_version, trace_model=True, use_convert_model=True)
class TestMask_IndexPut(PytorchLayerTest):
def _prepare_input(self):
return (np.random.randn(100, 5).astype(np.float32), np.random.randn(100, 5).astype(np.float32))
class aten_index_put_mask(torch.nn.Module):
def forward(self, x, y):
x[x < 0] = y[x < 0]
return x
class aten_index_put_mask2(torch.nn.Module):
def forward(self, x, y):
x[x < 0] = 0
return x
@pytest.mark.nightly
@pytest.mark.precommit
def test_nonzero_index_put_(self, ie_device, precision, ir_version):
self._test(self.aten_index_put_mask(), None, "aten::index_put_", ie_device, precision,
ir_version, trace_model=True, use_convert_model=True)
@pytest.mark.nightly
@pytest.mark.precommit
def test_index_put_masked_fill(self, ie_device, precision, ir_version):
self._test(self.aten_index_put_mask2(), None, "aten::index_put_", ie_device, precision,
ir_version, trace_model=True, use_convert_model=True)
class TestMaskKosmos_IndexPut(PytorchLayerTest):
def _prepare_input(self):
mask = np.random.randint(0, 2, [1, 30]).astype(np.bool_)
num = mask.sum()
return (np.random.randn(1, 30, 50).astype(np.float32), mask.astype(np.int32), np.random.randn(num, 50).astype(np.float32))
def create_model(self):
class aten_index_put_mask(torch.nn.Module):
def forward(self, x, y, z):
x[y.to(dtype=torch.bool)] = z
return x
ref_net = None
return aten_index_put_mask(), ref_net, "aten::index_put_"
@pytest.mark.nightly
@pytest.mark.precommit
def test_nonzero_kosmos_index_put_(self, ie_device, precision, ir_version):
self._test(*self.create_model(), ie_device, precision,
ir_version, trace_model=True, use_convert_model=True)