-
Notifications
You must be signed in to change notification settings - Fork 2.5k
/
Copy pathtest_layer_norm.py
54 lines (40 loc) · 1.9 KB
/
test_layer_norm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
# Copyright (C) 2018-2025 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
import pytest
from pytorch_layer_test_class import PytorchLayerTest
import numpy as np
class TestLayerNorm(PytorchLayerTest):
def _prepare_input(self):
import numpy as np
return (np.random.randn(20, 5, 10, 10).astype(np.float32),)
def create_model(self, normalized_shape, weight, bias, eps):
import torch
import torch.nn.functional as F
if weight == "ones":
weight = torch.ones(normalized_shape)
if weight == "random":
weight = torch.randn(normalized_shape)
if bias == "zeros":
bias = torch.zeros(normalized_shape)
if bias == "random":
bias = torch.randn(normalized_shape)
class aten_layer_norm(torch.nn.Module):
def __init__(self, normalized_shape, weight, bias, eps):
super(aten_layer_norm, self).__init__()
self.normalized_shape = normalized_shape
self.weight = weight
self.bias = bias
self.eps = eps
def forward(self, x):
return F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
ref_net = None
return aten_layer_norm(normalized_shape, weight, bias, eps), ref_net, "aten::layer_norm"
@pytest.mark.parametrize("normalized_shape", [[10,], [10, 10], [5, 10, 10]])
@pytest.mark.parametrize("weight", [None, "ones", "random"])
@pytest.mark.parametrize("bias", [None, "zeros", "random"])
@pytest.mark.parametrize("eps", [1e-5, 0.005])
@pytest.mark.nightly
@pytest.mark.precommit
@pytest.mark.precommit_torch_export
def test_layer_norm(self, normalized_shape, weight, bias, eps, ie_device, precision, ir_version):
self._test(*self.create_model(normalized_shape, weight, bias, eps), ie_device, precision, ir_version)