-
Notifications
You must be signed in to change notification settings - Fork 2.5k
/
Copy pathtest_log_softmax.py
47 lines (41 loc) · 1.52 KB
/
test_log_softmax.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
# Copyright (C) 2018-2025 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
import numpy as np
import pytest
import torch
import torch.nn.functional as F
from pytorch_layer_test_class import PytorchLayerTest
class aten_log_softmax(torch.nn.Module):
def __init__(self, dim, dtype) -> None:
super().__init__()
self.dim = dim
self.dtype = dtype
def forward(self, input_tensor):
return F.log_softmax(input_tensor, dim = self.dim, dtype = self.dtype)
class TestLogSoftmax(PytorchLayerTest):
def _prepare_input(self):
if self.input_dtype == torch.float:
self.input_tensor = np.random.randn(5, 9, 7)
else:
self.input_tensor = np.random.randint(-100, 100, (5, 9, 7))
return (self.input_tensor,)
@pytest.mark.parametrize(["input_dtype", "convert_dtype"], [
# convert_dtype cannot be of type int from pytorch limitations
[torch.int, torch.float32],
[torch.int, torch.float64],
[torch.float, None],
[torch.float, torch.float64]
])
@pytest.mark.parametrize("dim", [
0,
1,
-1
])
@pytest.mark.nightly
@pytest.mark.precommit
@pytest.mark.precommit_torch_export
@pytest.mark.precommit_fx_backend
def test_log_softmax(self, input_dtype, convert_dtype, dim, ie_device, precision, ir_version):
self.input_dtype = input_dtype
self._test(aten_log_softmax(dim, convert_dtype), None, "aten::log_softmax",
ie_device, precision, ir_version)