-
Notifications
You must be signed in to change notification settings - Fork 2.5k
/
Copy pathtest_loop.py
47 lines (37 loc) · 1.58 KB
/
test_loop.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
# Copyright (C) 2018-2025 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
import platform
import pytest
import numpy as np
from pytorch_layer_test_class import PytorchLayerTest
class TestLoopWithAlias(PytorchLayerTest):
def _prepare_input(self):
return (np.random.randn(*self.shape).astype(np.float32),)
def create_model(self, n):
import torch
class loop_alias_model(torch.nn.Module):
def __init__(self, n):
super(loop_alias_model, self).__init__()
self.n = n
def forward(self, x):
N = x.shape[1]
res = torch.zeros(1, self.n, dtype=torch.long)
d = torch.ones(1, N) * 1e10
f = torch.zeros(1, dtype=torch.long)
for i in range(self.n):
res[:, i] = f
_d = torch.sum((x - x[0, f, :]) ** 2, -1)
m = _d < d
d[m] = _d[m]
f = torch.max(d, -1)[1]
return res
return loop_alias_model(n), None, ["prim::Loop", "aten::copy_"]
@pytest.mark.parametrize("s,n", [([1, 1024, 3], 512), ([1, 512, 3], 128)])
@pytest.mark.nightly
@pytest.mark.precommit
@pytest.mark.xfail(condition=platform.system() == 'Darwin' and platform.machine() == 'arm64',
reason='Ticket - 122715')
def test_loop_alias(self, s, n, ie_device, precision, ir_version):
self.shape = s
self._test(*self.create_model(n), ie_device, precision,
ir_version, use_convert_model=True)